Magnetic-Field Controllable Displacement-Type Ferroelectricity Driven by Off-Center Fe2+ Ions in CaFe3Ti4O12 Perovskite

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-08-16 DOI:10.1002/adfm.202411133
Dabiao Lu, Denis Sheptyakov, Yingying Cao, Haoting Zhao, Jie Zhang, Maocai Pi, Xubin Ye, Zhehong Liu, Xueqiang Zhang, Zhao Pan, Xingxing Jiang, Zhiwei Hu, Yi-feng Yang, Pu Yu, Youwen Long
{"title":"Magnetic-Field Controllable Displacement-Type Ferroelectricity Driven by Off-Center Fe2+ Ions in CaFe3Ti4O12 Perovskite","authors":"Dabiao Lu, Denis Sheptyakov, Yingying Cao, Haoting Zhao, Jie Zhang, Maocai Pi, Xubin Ye, Zhehong Liu, Xueqiang Zhang, Zhao Pan, Xingxing Jiang, Zhiwei Hu, Yi-feng Yang, Pu Yu, Youwen Long","doi":"10.1002/adfm.202411133","DOIUrl":null,"url":null,"abstract":"Displacement-type ferroelectrics usually exclude magnetic <i>d</i>-electron contribution. Applying a magnetic field thus can little change the electric polarization. Herein, a magnetic ionic driven displacement-type perovskite ferroelectric CaFe<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub> is reported. In this compound, magnetic Fe<sup>2+</sup> ions contribute to both ferroelectric and antiferromagnetic orders respectively at <i>T</i><sub>C</sub> ≈107 and <i>T</i><sub>N</sub> ≈ 3.1 K, resulting in coupled electric and magnetic domains. A moderate magnetic field can induce a metamagnetic transition toward ferromagnetic correlations. External magnetic fields can thus readily tune the magnetic and the joint ferroelectric domains, giving rise to exceptional magnetic-field controllable displacement-type polarization with a large magnetoelectric (ME) coupling coefficient. This study opens up a new avenue to find unprecedented ME effects in displacement-type ferroelectrics for numerous applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202411133","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Displacement-type ferroelectrics usually exclude magnetic d-electron contribution. Applying a magnetic field thus can little change the electric polarization. Herein, a magnetic ionic driven displacement-type perovskite ferroelectric CaFe3Ti4O12 is reported. In this compound, magnetic Fe2+ ions contribute to both ferroelectric and antiferromagnetic orders respectively at TC ≈107 and TN ≈ 3.1 K, resulting in coupled electric and magnetic domains. A moderate magnetic field can induce a metamagnetic transition toward ferromagnetic correlations. External magnetic fields can thus readily tune the magnetic and the joint ferroelectric domains, giving rise to exceptional magnetic-field controllable displacement-type polarization with a large magnetoelectric (ME) coupling coefficient. This study opens up a new avenue to find unprecedented ME effects in displacement-type ferroelectrics for numerous applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CaFe3Ti4O12 包晶石中偏心 Fe2+ 离子驱动的磁场可控位移型铁电性
位移型铁电通常不包括磁性 d 电子的贡献。因此,施加磁场几乎不会改变电极化。本文报告了一种磁性离子驱动的位移型包晶铁电体 CaFe3Ti4O12。在该化合物中,磁性 Fe2+ 离子分别在 TC ≈107 和 TN ≈ 3.1 K 时对铁电阶和反铁磁阶起作用,从而形成耦合的电畴和磁畴。适度的磁场可诱导向铁磁关联的元磁转变。因此,外部磁场可以轻易地调节磁畴和铁电耦合畴,从而产生具有较大磁电(ME)耦合系数的特殊磁场可控位移型极化。这项研究为在位移型铁电体中发现前所未有的 ME 效应开辟了一条新途径,可应用于多种领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1