{"title":"Accumulated temperature dictates the regional structural variation of prokaryotic periphyton at soil-water interface in paddy fields","authors":"","doi":"10.1016/j.watres.2024.122259","DOIUrl":null,"url":null,"abstract":"<div><p>As a pervasive microbial aggregate found at the water-soil interface in paddy fields, periphyton plays crucial roles in modulating nutrient biogeochemical cycling. Consequently, it effectively mitigates non-point source pollution due to its diverse composition. Despite its significance, the mechanisms governing periphyton diversity across different rice planting regions remain poorly understood. To bridge this gap, we investigated periphyton grown in 200 paddy fields spanning 25° of latitude. Initially, we analyzed local diversity and latitudinal variations in prokaryotic communities within paddy field periphyton, identifying 7 abundant taxa, 42 moderate taxa, and 39 rare taxa as the fundamental prokaryotic framework. Subsequently, to elucidate the mechanisms governing periphyton diversity across large scales, we constructed interaction models illustrating triangular relationships among local richness, assembly, and regional variation of prokaryotic subcommunities. Our findings suggest that accumulated temperature-driven environmental filtering partially influences the assembly process of prokaryotes, thereby impacting local species richness and ultimately governing regional structural variations in periphyton. Furthermore, we determined that a latitude of 39° represents the critical threshold maximizing local species richness of periphyton in paddy fields. This study advances our understanding of the factors shaping periphyton geo-imprints and provides valuable insights into predicting their responses to environmental changes, potentially influencing rice production outcomes.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424011588","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a pervasive microbial aggregate found at the water-soil interface in paddy fields, periphyton plays crucial roles in modulating nutrient biogeochemical cycling. Consequently, it effectively mitigates non-point source pollution due to its diverse composition. Despite its significance, the mechanisms governing periphyton diversity across different rice planting regions remain poorly understood. To bridge this gap, we investigated periphyton grown in 200 paddy fields spanning 25° of latitude. Initially, we analyzed local diversity and latitudinal variations in prokaryotic communities within paddy field periphyton, identifying 7 abundant taxa, 42 moderate taxa, and 39 rare taxa as the fundamental prokaryotic framework. Subsequently, to elucidate the mechanisms governing periphyton diversity across large scales, we constructed interaction models illustrating triangular relationships among local richness, assembly, and regional variation of prokaryotic subcommunities. Our findings suggest that accumulated temperature-driven environmental filtering partially influences the assembly process of prokaryotes, thereby impacting local species richness and ultimately governing regional structural variations in periphyton. Furthermore, we determined that a latitude of 39° represents the critical threshold maximizing local species richness of periphyton in paddy fields. This study advances our understanding of the factors shaping periphyton geo-imprints and provides valuable insights into predicting their responses to environmental changes, potentially influencing rice production outcomes.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.