Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Integrative Plant Biology Pub Date : 2024-08-16 DOI:10.1111/jipb.13760
Zhou-Rui Wei, Dan Jiao, Christian Anton Wehenkel, Xiao-Xin Wei, Xiao-Quan Wang
{"title":"Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies.","authors":"Zhou-Rui Wei, Dan Jiao, Christian Anton Wehenkel, Xiao-Xin Wei, Xiao-Quan Wang","doi":"10.1111/jipb.13760","DOIUrl":null,"url":null,"abstract":"<p><p>Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13760","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth-largest conifer genus, is a keystone component of the boreal and temperate dark-coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high-latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统转录组学和生态学分析揭示了松柏的进化和形态适应。
针叶林正受到人为气候迅速变暖的严重威胁。冷杉(枞树)是第四大针叶树属,是北方和温带暗针叶林的重要组成部分,拥有大量的孑遗类群。然而,冷杉系统发育和生物地理历史的不确定性极大地阻碍了我们对冷杉未来动态的预测和有效保护。在本研究中,我们利用转录组测序产生的 1,533 个核基因和所有公认物种的完整取样,成功重建了全球冷杉的稳健系统发育,其中四个支系得到了强有力的支持,所有交叉关系都得到了解决,但也发现了主要由不完全的世系分类和杂交引起的系统发育不一致。分子年代测定和祖先区域重建表明,北半球高纬度地区的冷杉起源于晚白垩世,但所有现存冷杉的分化都发生在中新世到更新世,并随着新近纪晚期气候变冷和造山运动而发生了多次大陆和洲际扩散。值得注意的是,中国亚热带山地特有的四种极度濒危冷杉,包括从东到西的北山冷杉(A. beshanzuensis)、紫云冷杉(A. ziyuanensis)、梵净山冷杉(A. fanjingshanensis)和元宝山冷杉(A. yuanbaoshanensis),具有不同的起源和演化历史。此外,还发现了北美西部、日本中部和横断山脉等三个Abies物种丰富度热点地区。海拔和降水,尤其是最冷季度的降水,是驱动冷杉物种多样性全球分布模式的最重要环境因素。某些形态特征在进化过程中受到限制,与海拔变异(如紫锥)和抗寒性(如短柔毛枝条和树脂芽)相关的形态特征可能是全球冷杉物种多样化的原因之一。我们的研究为全球冷杉的时空演化提供了新的线索,这将对气候变暖背景下的森林管理和物种保护大有裨益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
期刊最新文献
MetMiner: A user‐friendly pipeline for large‐scale plant metabolomics data analysis A highly efficient soybean transformation system using GRF3-GIF1 chimeric protein. Cover Image: Issue information page Profiling of Phakopsora pachyrhizi transcriptome revealed co-expressed virulence effectors as prospective RNA interference targets for soybean rust management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1