Chun Yiu Law , David Tak Wai Lui , Eunice Lau , Chariene Shao Lin Woo , Johnny Yau Cheung Chang , Eunice Ka Hong Leung , Alan Chun Hong Lee , Chi Ho Lee , Yu Cho Woo , Wing Sun Chow , Karen Siu Ling Lam , Kathryn Choon Beng Tan , Tsz Ki Ling , Ching Wan Lam
{"title":"A missense variant in SLC12A3 gene enhances aberrant splicing causing Gitelman syndrome","authors":"Chun Yiu Law , David Tak Wai Lui , Eunice Lau , Chariene Shao Lin Woo , Johnny Yau Cheung Chang , Eunice Ka Hong Leung , Alan Chun Hong Lee , Chi Ho Lee , Yu Cho Woo , Wing Sun Chow , Karen Siu Ling Lam , Kathryn Choon Beng Tan , Tsz Ki Ling , Ching Wan Lam","doi":"10.1016/j.cca.2024.119924","DOIUrl":null,"url":null,"abstract":"<div><p>Gitelman syndrome (GS) is the most prevalent genetic tubulopathy characterized by several electrolyte abnormalities, including hypokalemia, hypomagnesemia, hypocalciuria, metabolic alkalosis, and hyperreninemic hyperaldosteronism. These features are caused by a bi-allelic mutation in the <em>SLC12A3</em> gene. In this report, we present a case of GS in an asymptomatic woman who incidentally exhibited hypokalemia during an antenatal check-up. Her biochemical profile was consistent with GS. Genetic analysis revealed two heterozygous variants <em>in trans</em>, namely, NM_001126108.2:c.625C>T; p.(Arg209Trp) and c.965C>T; p.(Ala322Val). The c.625C>T; p.(Arg209Trp) variant has previously been experimentally confirmed as a loss-of-function (LOF) variant. However, the functional impact of the c.965C>T variant, located at the 5 prime end of exon 8, has not been fully elucidated. Through the utilization of both complementary DNA (cDNA) and minigene analysis, we confirmed that the c.965C>T variant can generate two distinct cDNA transcripts. The first transcript carries a missense mutation, p.(Ala322Val) in the full <em>SLC12A3</em> transcript, while the second transcript consists of an in-frame deletion of both exons 7 and 8 in the <em>SLC25A13</em> transcript, in which may result in the loss of transmembrane regions 5 – 6 involved in chloride transport. Our findings provide insights into the intricate mechanisms of splicing, highlighting how a variant in one exon can remotely influence the transcription of an upstream exon, as observed with the variant in exon 8 impacting the transcription of exon 7.</p></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898124021776","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gitelman syndrome (GS) is the most prevalent genetic tubulopathy characterized by several electrolyte abnormalities, including hypokalemia, hypomagnesemia, hypocalciuria, metabolic alkalosis, and hyperreninemic hyperaldosteronism. These features are caused by a bi-allelic mutation in the SLC12A3 gene. In this report, we present a case of GS in an asymptomatic woman who incidentally exhibited hypokalemia during an antenatal check-up. Her biochemical profile was consistent with GS. Genetic analysis revealed two heterozygous variants in trans, namely, NM_001126108.2:c.625C>T; p.(Arg209Trp) and c.965C>T; p.(Ala322Val). The c.625C>T; p.(Arg209Trp) variant has previously been experimentally confirmed as a loss-of-function (LOF) variant. However, the functional impact of the c.965C>T variant, located at the 5 prime end of exon 8, has not been fully elucidated. Through the utilization of both complementary DNA (cDNA) and minigene analysis, we confirmed that the c.965C>T variant can generate two distinct cDNA transcripts. The first transcript carries a missense mutation, p.(Ala322Val) in the full SLC12A3 transcript, while the second transcript consists of an in-frame deletion of both exons 7 and 8 in the SLC25A13 transcript, in which may result in the loss of transmembrane regions 5 – 6 involved in chloride transport. Our findings provide insights into the intricate mechanisms of splicing, highlighting how a variant in one exon can remotely influence the transcription of an upstream exon, as observed with the variant in exon 8 impacting the transcription of exon 7.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.