Broadband asymmetric absorption-transmission and double-band rasorber of electromagnetic waves based on superconductor ceramics metastructures-photonic crystals
Lei Lei, Bao-Fei Wan, Si-Yuan Liao, Hai-Feng Zhang
{"title":"Broadband asymmetric absorption-transmission and double-band rasorber of electromagnetic waves based on superconductor ceramics metastructures-photonic crystals","authors":"Lei Lei, Bao-Fei Wan, Si-Yuan Liao, Hai-Feng Zhang","doi":"10.1016/j.jestch.2024.101810","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a kind of superconductor ceramics metastructure-photonic crystals (SCMPC) is proposed to investigate the absorption and transmission properties of electromagnetic waves (EW) by combining a metastructure with multiple degrees of freedom regulation and strong energy localization characteristics of photonic crystals. Firstly, for the periodically aligned SCMPC, EW mainly realizes absorption in forward propagation and transmission in backward case. The relative bandwidth (<em>RB</em>) for both forward absorptivity and backward transmittance greater than 0.9 is 2.7 %, and the operating bandwidth (<em>OB</em>) is 696 ∼ 715 terahertz (THz), which is an asymmetric absorption-transmission (AAT) characteristics. Importantly, the periodically aligned SCMPC can realize the double-band rasorber phenomenon, and the forward EW exhibits an absorption-transmission-absorption phenomenon with <em>OBs</em> of 644.2 ∼ 671.1 THz, 700.9 ∼ 742.1 THz, and 766.8 ∼ 784.2 THz. <em>RBs</em> with absorption and transmissivity greater than 0.8 are 4.1 %, 5.7 %, and 2.2 %, respectively, and the backward EW one is mainly transmitted. To optimize AAT, a quasi-periodic Octonacci sequence-aligned SCMPC is introduced. The results show that the maximum <em>OB</em> of forward absorption and backward transmission is 428.3 ∼ 670.5 THz and <em>RB</em> is 44.1 %, achieving favorable broadband AAT. In addition, the effects of temperatures, dielectric thicknesses, and stacking numbers on AAT are also investigated in detail. In conclusion, AAT has promising applications in unidirectional optical transmission, photodiodes, optical isolators, etc.</p></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"57 ","pages":"Article 101810"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215098624001964/pdfft?md5=6574e9625a0f704d3f4a2bbcbe88f651&pid=1-s2.0-S2215098624001964-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624001964","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a kind of superconductor ceramics metastructure-photonic crystals (SCMPC) is proposed to investigate the absorption and transmission properties of electromagnetic waves (EW) by combining a metastructure with multiple degrees of freedom regulation and strong energy localization characteristics of photonic crystals. Firstly, for the periodically aligned SCMPC, EW mainly realizes absorption in forward propagation and transmission in backward case. The relative bandwidth (RB) for both forward absorptivity and backward transmittance greater than 0.9 is 2.7 %, and the operating bandwidth (OB) is 696 ∼ 715 terahertz (THz), which is an asymmetric absorption-transmission (AAT) characteristics. Importantly, the periodically aligned SCMPC can realize the double-band rasorber phenomenon, and the forward EW exhibits an absorption-transmission-absorption phenomenon with OBs of 644.2 ∼ 671.1 THz, 700.9 ∼ 742.1 THz, and 766.8 ∼ 784.2 THz. RBs with absorption and transmissivity greater than 0.8 are 4.1 %, 5.7 %, and 2.2 %, respectively, and the backward EW one is mainly transmitted. To optimize AAT, a quasi-periodic Octonacci sequence-aligned SCMPC is introduced. The results show that the maximum OB of forward absorption and backward transmission is 428.3 ∼ 670.5 THz and RB is 44.1 %, achieving favorable broadband AAT. In addition, the effects of temperatures, dielectric thicknesses, and stacking numbers on AAT are also investigated in detail. In conclusion, AAT has promising applications in unidirectional optical transmission, photodiodes, optical isolators, etc.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)