{"title":"Wearable Kapton graphene biosensor for detection of toxic gases","authors":"Ilghar Rezaei , Alireza Barati Haghverdi , Ali Soldoozy , Toktam Aghaee , Sadegh Biabanifard","doi":"10.1016/j.hazadv.2024.100452","DOIUrl":null,"url":null,"abstract":"<div><p>Toxic gases cause a significant number of human deaths every year across the globe. Different types of harmful substances can affect individuals in various ways. Inhaling these gases can have harmful consequences for the body, leading to physiological changes or even death. As a preliminary measure, a simulation application is utilized to detect certain gases by utilizing small-scale and flexible architectures, along with advanced detection techniques. The active material used in this study is a patch of emitting graphene embedded on a polyimide film (Kapton), which helps to determine the frequency of the RF Planar Resonant Structure. We plan to utilize the graphene-Kapton sensor for conducting non-invasive testing. The device has been tested for detecting and recognizing various dangerous and toxic gases, including Fluorine azide (F2N), Hydrogen Iodide (HI), Nitrogen (N2), Methane (CH4), and Carbon monoxide (CO). The simulation results suggest that the Graphene-Kapton flexible sensor provides excellent detection performance. The sensor can accurately identify each gas based on its distinct characteristics. Furthermore, ample sensitivity analysis against geometrical parameters and external electrical stimulation is performed to show the robustness and reliability of the proposed structure.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"15 ","pages":"Article 100452"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000536/pdfft?md5=91a87fb2c7a16feabfe963207126110b&pid=1-s2.0-S2772416624000536-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416624000536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Toxic gases cause a significant number of human deaths every year across the globe. Different types of harmful substances can affect individuals in various ways. Inhaling these gases can have harmful consequences for the body, leading to physiological changes or even death. As a preliminary measure, a simulation application is utilized to detect certain gases by utilizing small-scale and flexible architectures, along with advanced detection techniques. The active material used in this study is a patch of emitting graphene embedded on a polyimide film (Kapton), which helps to determine the frequency of the RF Planar Resonant Structure. We plan to utilize the graphene-Kapton sensor for conducting non-invasive testing. The device has been tested for detecting and recognizing various dangerous and toxic gases, including Fluorine azide (F2N), Hydrogen Iodide (HI), Nitrogen (N2), Methane (CH4), and Carbon monoxide (CO). The simulation results suggest that the Graphene-Kapton flexible sensor provides excellent detection performance. The sensor can accurately identify each gas based on its distinct characteristics. Furthermore, ample sensitivity analysis against geometrical parameters and external electrical stimulation is performed to show the robustness and reliability of the proposed structure.