Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Remote Sensing in Ecology and Conservation Pub Date : 2024-08-17 DOI:10.1002/rse2.416
Rodrigo V. Leite, Cibele Amaral, Christopher S. R. Neigh, Diogo N. Cosenza, Carine Klauberg, Andrew T. Hudak, Luiz Aragão, Douglas C. Morton, Shane Coffield, Tempest McCabe, Carlos A. Silva
{"title":"Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management","authors":"Rodrigo V. Leite, Cibele Amaral, Christopher S. R. Neigh, Diogo N. Cosenza, Carine Klauberg, Andrew T. Hudak, Luiz Aragão, Douglas C. Morton, Shane Coffield, Tempest McCabe, Carlos A. Silva","doi":"10.1002/rse2.416","DOIUrl":null,"url":null,"abstract":"Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite‐based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km<jats:sup>2</jats:sup>) with high spatial and spectral resolution arising from the use of new spaceborne instruments with near‐global, freely‐available data. We identified sensors at spatial resolutions suitable for fuel treatment planning, featuring: lidar data for characterizing vegetation structure; hyperspectral sensors for retrieving chemical compounds and species composition; and dense time series derived from multispectral and synthetic aperture radar sensors for mapping phenology and moisture dynamics. We also highlight future hyperspectral and radar missions that will deliver valuable and complementary information for a new era of fuel load characterization from space. The data volume that is being generated may still challenge the usability by a diverse group of stakeholders. Seamless cyberinfrastructure and community engagement are paramount to guarantee the use of these cutting‐edge datasets for fuel monitoring and wildland fire management across the world.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"96 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.416","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite‐based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km2) with high spatial and spectral resolution arising from the use of new spaceborne instruments with near‐global, freely‐available data. We identified sensors at spatial resolutions suitable for fuel treatment planning, featuring: lidar data for characterizing vegetation structure; hyperspectral sensors for retrieving chemical compounds and species composition; and dense time series derived from multispectral and synthetic aperture radar sensors for mapping phenology and moisture dynamics. We also highlight future hyperspectral and radar missions that will deliver valuable and complementary information for a new era of fuel load characterization from space. The data volume that is being generated may still challenge the usability by a diverse group of stakeholders. Seamless cyberinfrastructure and community engagement are paramount to guarantee the use of these cutting‐edge datasets for fuel monitoring and wildland fire management across the world.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用下一代空间地球观测进行燃料监测和野地火灾管理
管理燃料是减轻野火对人类和环境负面影响的关键策略。使用基于卫星的地球观测数据已成为管理者在区域范围内优化燃料处理规划的重要工具。幸运的是,过去几年中发射了几个新的传感器,为加强燃料特征描述提供了新的机会。在此,我们总结了在大尺度(即数百到数千平方公里)、高空间分辨率和光谱分辨率的燃料特征描述方面的潜在改进,这些改进源于使用新的空间仪器和近全球、免费提供的数据。我们确定了适用于燃料处理规划的空间分辨率传感器,其特点是:激光雷达数据用于确定植被结构特征;高光谱传感器用于检索化合物和物种组成;多光谱和合成孔径雷达传感器产生的密集时间序列用于绘制物候和水分动态图。我们还重点介绍了未来的高光谱和雷达任务,这些任务将为新时代的太空燃料负荷特征描述提供宝贵的补充信息。正在生成的数据量可能仍会对不同利益相关者的可用性构成挑战。无缝网络基础设施和社区参与对于确保将这些前沿数据集用于世界各地的燃料监测和野地火灾管理至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
期刊最新文献
Near real‐time monitoring of wading birds using uncrewed aircraft systems and computer vision Examining wildfire dynamics using ECOSTRESS data with machine learning approaches: the case of South‐Eastern Australia's black summer Amazonian manatee critical habitat revealed by artificial intelligence‐based passive acoustic techniques Combining satellite and field data reveals Congo's forest types structure, functioning and composition Early spectral dynamics are indicative of distinct growth patterns in post‐wildfire forests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1