{"title":"A sensitive tobramycin electrochemical aptasensor based on multiple signal amplification cascades","authors":"","doi":"10.1016/j.bioelechem.2024.108797","DOIUrl":null,"url":null,"abstract":"<div><p>The residue of tobramycin, a broad spectrum antibiotic commonly used in animal husbandry, has evitable impact on human health, which may cause kidney damage, respiratory paralysis, neuromuscular blockade and cross-allergy in humans. Sensitive monitoring of tobramycin in animal-derived food products is therefore of great importance. Herein, a new aptamer electrochemical biosensor for sensing tobramycin with high sensitivity is demonstrated via exonuclease III (Exo III) and metal ion-dependent DNAzyme recycling and hybridization chain reaction (HCR) signal amplification cascades. Tobramycin analyte binds aptamer-containing hairpin probe to switch its conformation to expose the toehold sequence, which triggers Exo III-based catalytic digestion of the secondary hairpin to release many DNAzyme strands. The substrate hairpins immobilized on the Au electrode (AuE) are then cyclically cleaved by the DNAzymes to form ssDNAs, which further initiate HCR formation of lots of long methylene blue (MB)-tagged dsDNA polymers on the AuE. Subsequently electro-oxidation of these MB labels thus exhibit highly enhanced currents for sensing tobramycin within the 5–1000 nM concentration range with an impressive detection limit of 3.51 nM. Furthermore, this strategy has high selectivity for detecting tobramycin in milk and shows promising potential for detect other antibiotics for food safety monitoring.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001592","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The residue of tobramycin, a broad spectrum antibiotic commonly used in animal husbandry, has evitable impact on human health, which may cause kidney damage, respiratory paralysis, neuromuscular blockade and cross-allergy in humans. Sensitive monitoring of tobramycin in animal-derived food products is therefore of great importance. Herein, a new aptamer electrochemical biosensor for sensing tobramycin with high sensitivity is demonstrated via exonuclease III (Exo III) and metal ion-dependent DNAzyme recycling and hybridization chain reaction (HCR) signal amplification cascades. Tobramycin analyte binds aptamer-containing hairpin probe to switch its conformation to expose the toehold sequence, which triggers Exo III-based catalytic digestion of the secondary hairpin to release many DNAzyme strands. The substrate hairpins immobilized on the Au electrode (AuE) are then cyclically cleaved by the DNAzymes to form ssDNAs, which further initiate HCR formation of lots of long methylene blue (MB)-tagged dsDNA polymers on the AuE. Subsequently electro-oxidation of these MB labels thus exhibit highly enhanced currents for sensing tobramycin within the 5–1000 nM concentration range with an impressive detection limit of 3.51 nM. Furthermore, this strategy has high selectivity for detecting tobramycin in milk and shows promising potential for detect other antibiotics for food safety monitoring.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.