Behavioral dysregulation in Nile tilapia (Oreochromis niloticus, GIFT) post-Streptococcus agalactia infection: Role of the microbiota-gut-brain axis

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2024-08-16 DOI:10.1016/j.cbpc.2024.110006
{"title":"Behavioral dysregulation in Nile tilapia (Oreochromis niloticus, GIFT) post-Streptococcus agalactia infection: Role of the microbiota-gut-brain axis","authors":"","doi":"10.1016/j.cbpc.2024.110006","DOIUrl":null,"url":null,"abstract":"<div><p>In the aquatic farming industry, understanding the factors affecting fish behavior is crucial, particularly in response to infections that compromise welfare and productivity. Swimming performance is a key life history trait critical to their ecology. This study explores the swimming behavior imbalance in Nile tilapia (<em>Oreochromis niloticus</em>, GIFT) post-infection with <em>Streptococcus agalactiae</em> (GBS), a common pathogen responsible for significant losses in aquaculture. We focused on how the microbiota-gut-brain axis influences the behavioral response of tilapia to GBS infection. Behavioral changes were quantified by measuring collision times and swimming speeds, which decreased significantly following infection. This behavioral downturn is mediated by alterations in the microbiota-gut-brain axis, evidenced by increased levels of monoamine neurotransmitters (serotonin, norepinephrine, and dopamine) in the brain and intestinal tissues. The study utilized pharmacological agents, the 5-HT<sub>1A</sub> receptor agonist (8-OH-DPAT) and antagonist (WAY-100635), to investigate their efficacy in mitigating these behavioral and biochemical changes. Both agents partially restored normal behavior by adjusting neurotransmitter concentrations disrupted by GBS infection. Additionally, a notable increase in the relative abundance of <em>Streptococcus</em> within the gut microbiota of infected fish highlights the potential role of specific bacterial populations in influencing host behavior. This research provides novel insights into the complex interactions between pathogen-induced gut microbiota changes and Nile tilapia's behavioral outcomes, highlighting potential avenues for improving fish health management through microbiota-targeted interventions.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001741","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the aquatic farming industry, understanding the factors affecting fish behavior is crucial, particularly in response to infections that compromise welfare and productivity. Swimming performance is a key life history trait critical to their ecology. This study explores the swimming behavior imbalance in Nile tilapia (Oreochromis niloticus, GIFT) post-infection with Streptococcus agalactiae (GBS), a common pathogen responsible for significant losses in aquaculture. We focused on how the microbiota-gut-brain axis influences the behavioral response of tilapia to GBS infection. Behavioral changes were quantified by measuring collision times and swimming speeds, which decreased significantly following infection. This behavioral downturn is mediated by alterations in the microbiota-gut-brain axis, evidenced by increased levels of monoamine neurotransmitters (serotonin, norepinephrine, and dopamine) in the brain and intestinal tissues. The study utilized pharmacological agents, the 5-HT1A receptor agonist (8-OH-DPAT) and antagonist (WAY-100635), to investigate their efficacy in mitigating these behavioral and biochemical changes. Both agents partially restored normal behavior by adjusting neurotransmitter concentrations disrupted by GBS infection. Additionally, a notable increase in the relative abundance of Streptococcus within the gut microbiota of infected fish highlights the potential role of specific bacterial populations in influencing host behavior. This research provides novel insights into the complex interactions between pathogen-induced gut microbiota changes and Nile tilapia's behavioral outcomes, highlighting potential avenues for improving fish health management through microbiota-targeted interventions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尼罗罗非鱼(Oreochromis niloticus, GIFT)感染无乳链球菌后的行为失调:微生物群-肠-脑轴的作用。
在水产养殖业中,了解影响鱼类行为的因素至关重要,尤其是在应对影响鱼类福利和生产力的感染时。游泳性能是对其生态至关重要的关键生活史特征。本研究探讨了尼罗罗非鱼(Oreochromis niloticus,GIFT)感染猪链球菌(GBS)后的游泳行为失衡,猪链球菌是一种常见的病原体,在水产养殖中造成了重大损失。我们重点研究了微生物群-肠-脑轴如何影响罗非鱼对 GBS 感染的行为反应。通过测量罗非鱼的碰撞时间和游泳速度来量化其行为变化。这种行为衰退是由微生物群-肠-脑轴的改变介导的,大脑和肠道组织中单胺神经递质(5-羟色胺、去甲肾上腺素和多巴胺)水平的升高证明了这一点。该研究利用 5-HT1A 受体激动剂(8-OH-DPAT)和拮抗剂(WAY-100635)这两种药剂来研究它们在缓解这些行为和生化变化方面的功效。这两种药物通过调整因 GBS 感染而紊乱的神经递质浓度,部分恢复了正常行为。此外,受感染鱼类肠道微生物群中链球菌的相对丰度明显增加,这突出表明特定细菌群在影响宿主行为方面的潜在作用。这项研究为病原体诱导的肠道微生物群变化与尼罗罗非鱼行为结果之间复杂的相互作用提供了新的见解,突出了通过微生物群靶向干预改善鱼类健康管理的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
Assessing antioxidant responses in C6 and U-87 MG cell lines exposed to high copper levels. Deficiency of PvDRAM2 increased the nitrite sensitivity of Pacific white shrimp (Penaeus vannamei) by inhibiting autophagy. Effect of lead on photosynthetic pigments, antioxidant responses, metabolomics, thalli morphology and cell ultrastructure of Iridaea cordata (Rhodophyta) from Antarctica Tire rubber-derived contaminant 6PPD had the potential to induce metabolism disorder in early developmental stage of zebrafish Effects of water immersion on immune, intestinal flora and metabolome of Chinese mitten crab (Eriocheir sinensis) after air exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1