Md Anamul Hassan, Mabia Hossain Shetu, Osman Miah, Fahmida Parvin, Mashura Shammi, Shafi M Tareq
{"title":"The seasonal variation and ecological risk of microplastics in the Lower Ganges River, Bangladesh.","authors":"Md Anamul Hassan, Mabia Hossain Shetu, Osman Miah, Fahmida Parvin, Mashura Shammi, Shafi M Tareq","doi":"10.1002/wer.11103","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastic (MP) pollution has gained considerable attention in various ecosystems; however, it has received relatively less attention in freshwater-riverine environments than in other ecosystems. The Ganges River Delta, one of the world's most densely populated areas, is a potential source of MP pollution in the freshwater ecosystem. MPs were identified throughout the year in the lower Ganges River water. Seasonally, the highest abundance was observed during the monsoon (14.66 ± 2.06 MPs/L), followed by the pre-monsoon (13.46 ± 1.75 MPs/L) and post-monsoon (11.50 ± 0.40 MPs/L). Throughout the year, MP discharge was estimated at 4.12 × 10<sup>12</sup> to 2.17 × 10<sup>13</sup> MPs/year. Fourier transformed infrared spectroscopy identified plastic polymers in the water, like ethylene vinyl acetate, polystyrene, polypropylene, polyethylene, and nylon. Moderate contamination by MPs was assessed throughout the year. Significant correlations between MP abundance and both rainfall and discharge were observed. It is essential to implement preventative measures in the Ganges River Basin to mitigate MP pollution before the situation worsens. PRACTITIONER POINTS: Throughout the year, MP concentration ranged from 10.67 to 20.33 MPs/L The highest MP occurrence was observed in the monsoon season (14.66 ± 2.06 MPs/L) The lowest abundance was detected in the post-monsoon period (11.50 ± 0.40 MPs/L) There was a moderate level of MP contamination in the lower Ganges River water It was shown that discharge and rainfall were correlated with MP abundance.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 8","pages":"e11103"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11103","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastic (MP) pollution has gained considerable attention in various ecosystems; however, it has received relatively less attention in freshwater-riverine environments than in other ecosystems. The Ganges River Delta, one of the world's most densely populated areas, is a potential source of MP pollution in the freshwater ecosystem. MPs were identified throughout the year in the lower Ganges River water. Seasonally, the highest abundance was observed during the monsoon (14.66 ± 2.06 MPs/L), followed by the pre-monsoon (13.46 ± 1.75 MPs/L) and post-monsoon (11.50 ± 0.40 MPs/L). Throughout the year, MP discharge was estimated at 4.12 × 1012 to 2.17 × 1013 MPs/year. Fourier transformed infrared spectroscopy identified plastic polymers in the water, like ethylene vinyl acetate, polystyrene, polypropylene, polyethylene, and nylon. Moderate contamination by MPs was assessed throughout the year. Significant correlations between MP abundance and both rainfall and discharge were observed. It is essential to implement preventative measures in the Ganges River Basin to mitigate MP pollution before the situation worsens. PRACTITIONER POINTS: Throughout the year, MP concentration ranged from 10.67 to 20.33 MPs/L The highest MP occurrence was observed in the monsoon season (14.66 ± 2.06 MPs/L) The lowest abundance was detected in the post-monsoon period (11.50 ± 0.40 MPs/L) There was a moderate level of MP contamination in the lower Ganges River water It was shown that discharge and rainfall were correlated with MP abundance.
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.