Implementation and impact of an electronic patient reported outcomes system in a phase II multi-site adaptive platform clinical trial for early-stage breast cancer.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of the American Medical Informatics Association Pub Date : 2024-08-19 DOI:10.1093/jamia/ocae190
Anna Northrop, Anika Christofferson, Saumya Umashankar, Michelle Melisko, Paolo Castillo, Thelma Brown, Diane Heditsian, Susie Brain, Carol Simmons, Tina Hieken, Kathryn J Ruddy, Candace Mainor, Anosheh Afghahi, Sarah Tevis, Anne Blaes, Irene Kang, Adam Asare, Laura Esserman, Dawn L Hershman, Amrita Basu
{"title":"Implementation and impact of an electronic patient reported outcomes system in a phase II multi-site adaptive platform clinical trial for early-stage breast cancer.","authors":"Anna Northrop, Anika Christofferson, Saumya Umashankar, Michelle Melisko, Paolo Castillo, Thelma Brown, Diane Heditsian, Susie Brain, Carol Simmons, Tina Hieken, Kathryn J Ruddy, Candace Mainor, Anosheh Afghahi, Sarah Tevis, Anne Blaes, Irene Kang, Adam Asare, Laura Esserman, Dawn L Hershman, Amrita Basu","doi":"10.1093/jamia/ocae190","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We describe the development and implementation of a system for monitoring patient-reported adverse events and quality of life using electronic Patient Reported Outcome (ePRO) instruments in the I-SPY2 Trial, a phase II clinical trial for locally advanced breast cancer. We describe the administration of technological, workflow, and behavior change interventions and their associated impact on questionnaire completion.</p><p><strong>Materials and methods: </strong>Using the OpenClinica electronic data capture system, we developed rules-based logic to build automated ePRO surveys, customized to the I-SPY2 treatment schedule. We piloted ePROs at the University of California, San Francisco (UCSF) to optimize workflow in the context of trial treatment scenarios and staggered rollout of the ePRO system to 26 sites to ensure effective implementation of the technology.</p><p><strong>Results: </strong>Increasing ePRO completion requires workflow solutions and research staff engagement. Over two years, we increased baseline survey completion from 25% to 80%. The majority of patients completed between 30% and 75% of the questionnaires they received, with no statistically significant variation in survey completion by age, race or ethnicity. Patients who completed the screening timepoint questionnaire were significantly more likely to complete more of the surveys they received at later timepoints (mean completion of 74.1% vs 35.5%, P < .0001). Baseline PROMIS social functioning and grade 2 or more PRO-CTCAE interference of Abdominal Pain, Decreased Appetite, Dizziness and Shortness of Breath was associated with lower survey completion rates.</p><p><strong>Discussion and conclusion: </strong>By implementing ePROs, we have the potential to increase efficiency and accuracy of patient-reported clinical trial data collection, while improving quality of care, patient safety, and health outcomes. Our method is accessible across demographics and facilitates an ease of data collection and sharing across nationwide sites. We identify predictors of decreased completion that can optimize resource allocation by better targeting efforts such as in-person outreach, staff engagement, a robust technical workflow, and increased monitoring to improve overall completion rates.</p><p><strong>Trial registration: </strong>https://clinicaltrials.gov/study/NCT01042379.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae190","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: We describe the development and implementation of a system for monitoring patient-reported adverse events and quality of life using electronic Patient Reported Outcome (ePRO) instruments in the I-SPY2 Trial, a phase II clinical trial for locally advanced breast cancer. We describe the administration of technological, workflow, and behavior change interventions and their associated impact on questionnaire completion.

Materials and methods: Using the OpenClinica electronic data capture system, we developed rules-based logic to build automated ePRO surveys, customized to the I-SPY2 treatment schedule. We piloted ePROs at the University of California, San Francisco (UCSF) to optimize workflow in the context of trial treatment scenarios and staggered rollout of the ePRO system to 26 sites to ensure effective implementation of the technology.

Results: Increasing ePRO completion requires workflow solutions and research staff engagement. Over two years, we increased baseline survey completion from 25% to 80%. The majority of patients completed between 30% and 75% of the questionnaires they received, with no statistically significant variation in survey completion by age, race or ethnicity. Patients who completed the screening timepoint questionnaire were significantly more likely to complete more of the surveys they received at later timepoints (mean completion of 74.1% vs 35.5%, P < .0001). Baseline PROMIS social functioning and grade 2 or more PRO-CTCAE interference of Abdominal Pain, Decreased Appetite, Dizziness and Shortness of Breath was associated with lower survey completion rates.

Discussion and conclusion: By implementing ePROs, we have the potential to increase efficiency and accuracy of patient-reported clinical trial data collection, while improving quality of care, patient safety, and health outcomes. Our method is accessible across demographics and facilitates an ease of data collection and sharing across nationwide sites. We identify predictors of decreased completion that can optimize resource allocation by better targeting efforts such as in-person outreach, staff engagement, a robust technical workflow, and increased monitoring to improve overall completion rates.

Trial registration: https://clinicaltrials.gov/study/NCT01042379.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在一项针对早期乳腺癌的 II 期多站点自适应平台临床试验中实施电子患者报告结果系统及其影响。
目的:我们描述了在治疗局部晚期乳腺癌的 II 期临床试验 I-SPY2 试验中使用电子患者报告结果(ePRO)工具监测患者报告的不良事件和生活质量的系统的开发和实施情况。我们介绍了技术、工作流程和行为改变干预措施的实施情况及其对问卷完成情况的相关影响:利用 OpenClinica 电子数据采集系统,我们开发了基于规则的逻辑来建立自动 ePRO 调查,并根据 I-SPY2 治疗计划进行了定制。我们在加州大学旧金山分校(UCSF)试行了 ePRO,以优化试验治疗方案中的工作流程,并将 ePRO 系统交错推广到 26 个研究机构,以确保该技术的有效实施:提高 ePRO 的完成率需要工作流程解决方案和研究人员的参与。两年来,我们将基线调查的完成率从 25% 提高到了 80%。大多数患者的问卷完成率在 30% 到 75% 之间,不同年龄、种族或民族的问卷完成率没有明显的统计学差异。完成筛查时间点调查问卷的患者更有可能在以后的时间点完成更多的调查问卷(平均完成率为 74.1% vs 35.5%,P 讨论和结论:通过实施 ePRO,我们有可能提高患者报告的临床试验数据收集的效率和准确性,同时改善护理质量、患者安全和健康结果。我们的方法适用于各种人口统计学特征,便于在全国范围内收集和共享数据。我们确定了完成率下降的预测因素,这些因素可以优化资源分配,更好地有针对性地开展工作,如面对面宣传、员工参与、强大的技术工作流程以及加强监测,从而提高总体完成率。试验注册:https://clinicaltrials.gov/study/NCT01042379。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
期刊最新文献
Predicting mortality in hospitalized influenza patients: integration of deep learning-based chest X-ray severity score (FluDeep-XR) and clinical variables. Using human factors methods to mitigate bias in artificial intelligence-based clinical decision support. Distributed, immutable, and transparent biomedical limited data set request management on multi-capacity network. DySurv: dynamic deep learning model for survival analysis with conditional variational inference. Identifying stigmatizing and positive/preferred language in obstetric clinical notes using natural language processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1