Rebecca Schnall, Thomas Foster Scherr, Lisa M Kuhns, Patrick Janulis, Haomiao Jia, Olivia R Wood, Michael Almodovar, Robert Garofalo
Objective: To determine the efficacy of the mLab App, a mobile-delivered HIV prevention intervention to increase HIV self-testing in MSM and TGW.
Materials and methods: This was a randomized (2:2:1) clinical trial of the efficacy the mLab App as compared to standard of care vs mailed home HIV test arm among 525 MSM and TGW aged 18-29 years to increase HIV testing.
Results: The mLab App arm participants demonstrated an increase from 35.1% reporting HIV testing in the prior 6 months compared to 88.5% at 6 months. In contrast, 28.8% of control participants reported an HIV test at baseline, which only increased to 65.1% at 6 months. In a generalized linear mixed model estimating this change and controlling for multiple observations of participants, this equated to control participants reporting a 61.2% smaller increase in HIV testing relative to mLab participants (P = .001) at 6 months. This difference was maintained at 12 months with control participants reporting an 82.6% smaller increase relative to mLab App participants (P < .001) from baseline to 12 months.
Discussion and conclusion: Findings suggest that the mLab App is well-supported, evidence-based, behavioral risk-reduction intervention for increasing HIV testing rates as compared to the standard of care, suggesting that this may be a useful behavioral risk-reduction intervention for increasing HIV testing among young MSM.
Trial registration: This trial was registered with Clinicaltrials.gov NCT03803683.
目的确定 mLab 应用程序的疗效,该应用程序是一种移动艾滋病毒预防干预措施,旨在提高 MSM 和 TGW 的艾滋病毒自我检测率:这是一项随机(2:2:1)临床试验,目的是在 525 名 18-29 岁的 MSM 和 TGW 中,比较 mLab App 与标准护理和邮寄家庭 HIV 检测工具的效果,以增加 HIV 检测:结果:mLab 应用程序组的参与者在过去 6 个月中报告接受 HIV 检测的比例从 35.1%上升到 6 个月时的 88.5%。相比之下,28.8% 的对照组参与者在基线时报告进行了 HIV 检测,而在 6 个月时仅增加到 65.1%。通过广义线性混合模型对这一变化进行估算,并对参与者的多重观察结果进行控制,结果显示,对照组参与者在 6 个月时报告的 HIV 检测率比 mLab 参与者低 61.2%(P = .001)。这一差异在 12 个月时得以保持,对照组参与者的艾滋病检测率比 mLab 应用程序参与者低 82.6%(P 讨论和结论:研究结果表明,与标准护理相比,mLab 应用程序是得到充分支持的循证行为风险降低干预措施,可提高 HIV 检测率,这表明它可能是提高年轻 MSM HIV 检测率的有效行为风险降低干预措施:该试验已在 Clinicaltrials.gov NCT03803683 上注册。
{"title":"Efficacy of the mLab App: a randomized clinical trial for increasing HIV testing uptake using mobile technology.","authors":"Rebecca Schnall, Thomas Foster Scherr, Lisa M Kuhns, Patrick Janulis, Haomiao Jia, Olivia R Wood, Michael Almodovar, Robert Garofalo","doi":"10.1093/jamia/ocae261","DOIUrl":"https://doi.org/10.1093/jamia/ocae261","url":null,"abstract":"<p><strong>Objective: </strong>To determine the efficacy of the mLab App, a mobile-delivered HIV prevention intervention to increase HIV self-testing in MSM and TGW.</p><p><strong>Materials and methods: </strong>This was a randomized (2:2:1) clinical trial of the efficacy the mLab App as compared to standard of care vs mailed home HIV test arm among 525 MSM and TGW aged 18-29 years to increase HIV testing.</p><p><strong>Results: </strong>The mLab App arm participants demonstrated an increase from 35.1% reporting HIV testing in the prior 6 months compared to 88.5% at 6 months. In contrast, 28.8% of control participants reported an HIV test at baseline, which only increased to 65.1% at 6 months. In a generalized linear mixed model estimating this change and controlling for multiple observations of participants, this equated to control participants reporting a 61.2% smaller increase in HIV testing relative to mLab participants (P = .001) at 6 months. This difference was maintained at 12 months with control participants reporting an 82.6% smaller increase relative to mLab App participants (P < .001) from baseline to 12 months.</p><p><strong>Discussion and conclusion: </strong>Findings suggest that the mLab App is well-supported, evidence-based, behavioral risk-reduction intervention for increasing HIV testing rates as compared to the standard of care, suggesting that this may be a useful behavioral risk-reduction intervention for increasing HIV testing among young MSM.</p><p><strong>Trial registration: </strong>This trial was registered with Clinicaltrials.gov NCT03803683.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica Sperling, Whitney Welsh, Erin Haseley, Stella Quenstedt, Perusi B Muhigaba, Adrian Brown, Patti Ephraim, Tariq Shafi, Michael Waitzkin, David Casarett, Benjamin A Goldstein
Objectives: This study aims to improve the ethical use of machine learning (ML)-based clinical prediction models (CPMs) in shared decision-making for patients with kidney failure on dialysis. We explore factors that inform acceptability, interpretability, and implementation of ML-based CPMs among multiple constituent groups.
Materials and methods: We collected and analyzed qualitative data from focus groups with varied end users, including: dialysis support providers (clinical providers and additional dialysis support providers such as dialysis clinic staff and social workers); patients; patients' caregivers (n = 52).
Results: Participants were broadly accepting of ML-based CPMs, but with concerns on data sources, factors included in the model, and accuracy. Use was desired in conjunction with providers' views and explanations. Differences among respondent types were minimal overall but most prevalent in discussions of CPM presentation and model use.
Discussion and conclusion: Evidence of acceptability of ML-based CPM usage provides support for ethical use, but numerous specific considerations in acceptability, model construction, and model use for shared clinical decision-making must be considered. There are specific steps that could be taken by data scientists and health systems to engender use that is accepted by end users and facilitates trust, but there are also ongoing barriers or challenges in addressing desires for use. This study contributes to emerging literature on interpretability, mechanisms for sharing complexities, including uncertainty regarding the model results, and implications for decision-making. It examines numerous stakeholder groups including providers, patients, and caregivers to provide specific considerations that can influence health system use and provide a basis for future research.
研究目的本研究旨在改善基于机器学习(ML)的临床预测模型(CPM)在透析肾衰竭患者共同决策中的伦理使用。我们探讨了多个组成群体对基于机器学习的临床预测模型的可接受性、可解释性和实施情况的影响因素:我们收集并分析了来自焦点小组的定性数据,这些焦点小组由不同的终端用户组成,包括:透析支持服务提供者(临床服务提供者和其他透析支持服务提供者,如透析诊所工作人员和社会工作者);患者;患者的护理人员(n = 52):结果:参与者普遍接受基于 ML 的 CPM,但对数据来源、模型中包含的因素和准确性表示担忧。他们希望结合医疗服务提供者的观点和解释来使用。受访者类型之间的差异总体上很小,但在 CPM 演示和模型使用的讨论中最为普遍:基于 ML 的 CPM 使用的可接受性证据为道德使用提供了支持,但在可接受性、模型构建和临床决策共享模型使用方面必须考虑许多具体因素。数据科学家和医疗系统可以采取一些具体步骤来促进最终用户接受和信任的使用,但在满足使用愿望方面也存在持续的障碍或挑战。本研究为有关可解释性、复杂性共享机制(包括模型结果的不确定性)以及对决策的影响的新兴文献做出了贡献。它对包括医疗服务提供者、患者和护理人员在内的众多利益相关者群体进行了研究,以提供可影响医疗系统使用的具体考虑因素,并为未来的研究奠定基础。
{"title":"Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use.","authors":"Jessica Sperling, Whitney Welsh, Erin Haseley, Stella Quenstedt, Perusi B Muhigaba, Adrian Brown, Patti Ephraim, Tariq Shafi, Michael Waitzkin, David Casarett, Benjamin A Goldstein","doi":"10.1093/jamia/ocae255","DOIUrl":"10.1093/jamia/ocae255","url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to improve the ethical use of machine learning (ML)-based clinical prediction models (CPMs) in shared decision-making for patients with kidney failure on dialysis. We explore factors that inform acceptability, interpretability, and implementation of ML-based CPMs among multiple constituent groups.</p><p><strong>Materials and methods: </strong>We collected and analyzed qualitative data from focus groups with varied end users, including: dialysis support providers (clinical providers and additional dialysis support providers such as dialysis clinic staff and social workers); patients; patients' caregivers (n = 52).</p><p><strong>Results: </strong>Participants were broadly accepting of ML-based CPMs, but with concerns on data sources, factors included in the model, and accuracy. Use was desired in conjunction with providers' views and explanations. Differences among respondent types were minimal overall but most prevalent in discussions of CPM presentation and model use.</p><p><strong>Discussion and conclusion: </strong>Evidence of acceptability of ML-based CPM usage provides support for ethical use, but numerous specific considerations in acceptability, model construction, and model use for shared clinical decision-making must be considered. There are specific steps that could be taken by data scientists and health systems to engender use that is accepted by end users and facilitates trust, but there are also ongoing barriers or challenges in addressing desires for use. This study contributes to emerging literature on interpretability, mechanisms for sharing complexities, including uncertainty regarding the model results, and implications for decision-making. It examines numerous stakeholder groups including providers, patients, and caregivers to provide specific considerations that can influence health system use and provide a basis for future research.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rubin Baskir, Minnkyong Lee, Sydney J McMaster, Jessica Lee, Faith Blackburne-Proctor, Romuladus Azuine, Nakia Mack, Sheri D Schully, Martin Mendoza, Janeth Sanchez, Yong Crosby, Erica Zumba, Michael Hahn, Naomi Aspaas, Ahmed Elmi, Shanté Alerté, Elizabeth Stewart, Danielle Wilfong, Meag Doherty, Margaret M Farrell, Grace B Hébert, Sula Hood, Cheryl M Thomas, Debra D Murray, Brendan Lee, Louisa A Stark, Megan A Lewis, Jen D Uhrig, Laura R Bartlett, Edgar Gil Rico, Adolph Falcón, Elizabeth Cohn, Mitchell R Lunn, Juno Obedin-Maliver, Linda Cottler, Milton Eder, Fornessa T Randal, Jason Karnes, KiTani Lemieux, Nelson Lemieux, Nelson Lemieux, Lilanta Bradley, Ronnie Tepp, Meredith Wilson, Monica Rodriguez, Chris Lunt, Karriem Watson
Objectives: The NIH All of Us Research Program (All of Us) is engaging a diverse community of more than 10 000 registered researchers using a robust engagement ecosystem model. We describe strategies used to build an ecosystem that attracts and supports a diverse and inclusive researcher community to use the All of Us dataset and provide metrics on All of Us researcher usage growth.
Materials and methods: Researcher audiences and diversity categories were defined to guide a strategy. A researcher engagement strategy was codeveloped with program partners to support a researcher engagement ecosystem. An adapted ecological model guided the ecosystem to address multiple levels of influence to support All of Us data use. Statistics from the All of Us Researcher Workbench demographic survey describe trends in researchers' and institutional use of the Workbench and publication numbers.
Results: From 2022 to 2024, some 13 partner organizations and their subawardees conducted outreach, built capacity, or supported researchers and institutions in using the data. Trends indicate that Workbench registrations and use have increased over time, including among researchers underrepresented in the biomedical workforce. Data Use and Registration Agreements from minority-serving institutions also increased.
Discussion: All of Us built a diverse, inclusive, and growing research community via intentional engagement with researchers and via partnerships to address systemic data access issues. Future programs will provide additional support to researchers and institutions to ameliorate All of Us data use challenges.
Conclusion: The approach described helps address structural inequities in the biomedical research field to advance health equity.
目标:美国国立卫生研究院的 "我们所有人研究计划"(All of Us)正在利用一个强大的参与生态系统模式吸引一个由 10,000 多名注册研究人员组成的多元化社区。我们描述了为建立一个吸引和支持多元化、包容性研究人员社区使用 All of Us 数据集的生态系统所采用的策略,并提供了有关 All of Us 研究人员使用量增长的指标:定义研究人员受众和多样性类别,为战略提供指导。与项目合作伙伴共同制定了研究人员参与战略,以支持研究人员参与生态系统。一个经过调整的生态模型为生态系统提供指导,以解决多层次的影响问题,支持 "我们所有 "数据的使用。来自 "我们所有 "研究人员工作台人口调查的统计数据描述了研究人员和机构使用工作台的趋势以及发表论文的数量:从 2022 年到 2024 年,约有 13 个合作伙伴组织及其次级受款人开展了外联活动、能力建设或支持研究人员和机构使用数据。趋势表明,随着时间的推移,Workbench 的注册量和使用量都在增加,其中包括在生物医学队伍中代表性不足的研究人员。来自少数民族服务机构的数据使用和注册协议也有所增加:讨论:"我们所有人 "计划通过有意识地与研究人员接触,并通过合作伙伴关系来解决系统性数据访问问题,从而建立了一个多样化、包容性和不断发展的研究社区。未来的计划将为研究人员和机构提供更多支持,以改善 "我们所有 "数据使用方面的挑战:结论:所述方法有助于解决生物医学研究领域的结构性不平等问题,从而促进健康公平。
{"title":"Research for all: building a diverse researcher community for the All of Us Research Program.","authors":"Rubin Baskir, Minnkyong Lee, Sydney J McMaster, Jessica Lee, Faith Blackburne-Proctor, Romuladus Azuine, Nakia Mack, Sheri D Schully, Martin Mendoza, Janeth Sanchez, Yong Crosby, Erica Zumba, Michael Hahn, Naomi Aspaas, Ahmed Elmi, Shanté Alerté, Elizabeth Stewart, Danielle Wilfong, Meag Doherty, Margaret M Farrell, Grace B Hébert, Sula Hood, Cheryl M Thomas, Debra D Murray, Brendan Lee, Louisa A Stark, Megan A Lewis, Jen D Uhrig, Laura R Bartlett, Edgar Gil Rico, Adolph Falcón, Elizabeth Cohn, Mitchell R Lunn, Juno Obedin-Maliver, Linda Cottler, Milton Eder, Fornessa T Randal, Jason Karnes, KiTani Lemieux, Nelson Lemieux, Nelson Lemieux, Lilanta Bradley, Ronnie Tepp, Meredith Wilson, Monica Rodriguez, Chris Lunt, Karriem Watson","doi":"10.1093/jamia/ocae270","DOIUrl":"10.1093/jamia/ocae270","url":null,"abstract":"<p><strong>Objectives: </strong>The NIH All of Us Research Program (All of Us) is engaging a diverse community of more than 10 000 registered researchers using a robust engagement ecosystem model. We describe strategies used to build an ecosystem that attracts and supports a diverse and inclusive researcher community to use the All of Us dataset and provide metrics on All of Us researcher usage growth.</p><p><strong>Materials and methods: </strong>Researcher audiences and diversity categories were defined to guide a strategy. A researcher engagement strategy was codeveloped with program partners to support a researcher engagement ecosystem. An adapted ecological model guided the ecosystem to address multiple levels of influence to support All of Us data use. Statistics from the All of Us Researcher Workbench demographic survey describe trends in researchers' and institutional use of the Workbench and publication numbers.</p><p><strong>Results: </strong>From 2022 to 2024, some 13 partner organizations and their subawardees conducted outreach, built capacity, or supported researchers and institutions in using the data. Trends indicate that Workbench registrations and use have increased over time, including among researchers underrepresented in the biomedical workforce. Data Use and Registration Agreements from minority-serving institutions also increased.</p><p><strong>Discussion: </strong>All of Us built a diverse, inclusive, and growing research community via intentional engagement with researchers and via partnerships to address systemic data access issues. Future programs will provide additional support to researchers and institutions to ameliorate All of Us data use challenges.</p><p><strong>Conclusion: </strong>The approach described helps address structural inequities in the biomedical research field to advance health equity.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aaron S Eisman, Elizabeth S Chen, Wen-Chih Wu, Karen M Crowley, Dilum P Aluthge, Katherine Brown, Indra Neil Sarkar
Objective: To demonstrate the potential for a centrally managed health information exchange standardized to a common data model (HIE-CDM) to facilitate semantic data flow needed to support a learning health system (LHS).
Materials and methods: The Rhode Island Quality Institute operates the Rhode Island (RI) statewide HIE, which aggregates RI health data for more than half of the state's population from 47 data partners. We standardized HIE data to the Observational Medical Outcomes Partnership (OMOP) CDM. Atherosclerotic cardiovascular disease (ASCVD) risk and primary prevention practices were selected to demonstrate LHS semantic data flow from 2013 to 2023.
Results: We calculated longitudinal 10-year ASCVD risk on 62,999 individuals. Nearly two-thirds had ASCVD risk factors from more than one data partner. This enabled granular tracking of individual ASCVD risk, primary prevention (ie, statin therapy), and incident disease. The population was on statins for fewer than half of the guideline-recommended days. We also found that individuals receiving care at Federally Qualified Health Centers were more likely to have unfavorable ASCVD risk profiles and more likely to be on statins. CDM transformation reduced data heterogeneity through a unified health record that adheres to defined terminologies per OMOP domain.
Discussion: We demonstrated the potential for an HIE-CDM to enable observational population health research. We also showed how to leverage existing health information technology infrastructure and health data best practices to break down LHS barriers.
Conclusion: HIE-CDM facilitates knowledge curation and health system intervention development at the individual, health system, and population levels.
{"title":"Learning health system linchpins: information exchange and a common data model.","authors":"Aaron S Eisman, Elizabeth S Chen, Wen-Chih Wu, Karen M Crowley, Dilum P Aluthge, Katherine Brown, Indra Neil Sarkar","doi":"10.1093/jamia/ocae277","DOIUrl":"https://doi.org/10.1093/jamia/ocae277","url":null,"abstract":"<p><strong>Objective: </strong>To demonstrate the potential for a centrally managed health information exchange standardized to a common data model (HIE-CDM) to facilitate semantic data flow needed to support a learning health system (LHS).</p><p><strong>Materials and methods: </strong>The Rhode Island Quality Institute operates the Rhode Island (RI) statewide HIE, which aggregates RI health data for more than half of the state's population from 47 data partners. We standardized HIE data to the Observational Medical Outcomes Partnership (OMOP) CDM. Atherosclerotic cardiovascular disease (ASCVD) risk and primary prevention practices were selected to demonstrate LHS semantic data flow from 2013 to 2023.</p><p><strong>Results: </strong>We calculated longitudinal 10-year ASCVD risk on 62,999 individuals. Nearly two-thirds had ASCVD risk factors from more than one data partner. This enabled granular tracking of individual ASCVD risk, primary prevention (ie, statin therapy), and incident disease. The population was on statins for fewer than half of the guideline-recommended days. We also found that individuals receiving care at Federally Qualified Health Centers were more likely to have unfavorable ASCVD risk profiles and more likely to be on statins. CDM transformation reduced data heterogeneity through a unified health record that adheres to defined terminologies per OMOP domain.</p><p><strong>Discussion: </strong>We demonstrated the potential for an HIE-CDM to enable observational population health research. We also showed how to leverage existing health information technology infrastructure and health data best practices to break down LHS barriers.</p><p><strong>Conclusion: </strong>HIE-CDM facilitates knowledge curation and health system intervention development at the individual, health system, and population levels.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arihant Tripathi, Brett Ecker, Patrick Boland, Saum Ghodoussipour, Gregory R Riedlinger, Subhajyoti De
Objectives: Cancer diagnosis comes as a shock to many patients, and many of them feel unprepared to handle the complexity of the life-changing event, understand technicalities of the diagnostic reports, and fully engage with the clinical team regarding the personalized clinical decision-making.
Materials and methods: We develop Oncointerpreter.ai an interactive resource to offer personalized summarization of clinical cancer genomic and pathological data, and frame questions or address queries about therapeutic opportunities in near-real time via a graphical interface. It is built on the Mistral-7B and Llama-2 7B large language models trained on a local database trained using a large, curated corpus.
Results: We showcase its utility with case studies, where Oncointerpreter.ai extracted key clinical and molecular attributes from deidentified pathology and clinical genomics reports, summarized their contextual significance and answered queries on pertinent treatment options. Oncointerpreter also provided personalized summary of currently active clinical trials that match the patients' disease status, their selection criteria, and geographic locations. Benchmarking and comparative assessment indicated that the model responses were generally consistent, and hallucination, ie, factually incorrect or nonsensical response was rare; treatment- and outcome related queries led to context-aware responses, and response time correlated with verbosity.
Discussion: The choice of model and domain-specific training also affected the response quality.
Conclusion: Oncointerpreter.ai can aid the existing clinical care with interactive, individualized summarization of diagnostics data to promote informed dialogs with the patients with new cancer diagnoses.
{"title":"Oncointerpreter.ai enables interactive, personalized summarization of cancer diagnostics data.","authors":"Arihant Tripathi, Brett Ecker, Patrick Boland, Saum Ghodoussipour, Gregory R Riedlinger, Subhajyoti De","doi":"10.1093/jamia/ocae284","DOIUrl":"10.1093/jamia/ocae284","url":null,"abstract":"<p><strong>Objectives: </strong>Cancer diagnosis comes as a shock to many patients, and many of them feel unprepared to handle the complexity of the life-changing event, understand technicalities of the diagnostic reports, and fully engage with the clinical team regarding the personalized clinical decision-making.</p><p><strong>Materials and methods: </strong>We develop Oncointerpreter.ai an interactive resource to offer personalized summarization of clinical cancer genomic and pathological data, and frame questions or address queries about therapeutic opportunities in near-real time via a graphical interface. It is built on the Mistral-7B and Llama-2 7B large language models trained on a local database trained using a large, curated corpus.</p><p><strong>Results: </strong>We showcase its utility with case studies, where Oncointerpreter.ai extracted key clinical and molecular attributes from deidentified pathology and clinical genomics reports, summarized their contextual significance and answered queries on pertinent treatment options. Oncointerpreter also provided personalized summary of currently active clinical trials that match the patients' disease status, their selection criteria, and geographic locations. Benchmarking and comparative assessment indicated that the model responses were generally consistent, and hallucination, ie, factually incorrect or nonsensical response was rare; treatment- and outcome related queries led to context-aware responses, and response time correlated with verbosity.</p><p><strong>Discussion: </strong>The choice of model and domain-specific training also affected the response quality.</p><p><strong>Conclusion: </strong>Oncointerpreter.ai can aid the existing clinical care with interactive, individualized summarization of diagnostics data to promote informed dialogs with the patients with new cancer diagnoses.</p><p><strong>Availability: </strong>https://github.com/Siris2314/Oncointerpreter.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua Trujeque, R Adams Dudley, Nathan Mesfin, Nicholas E Ingraham, Isai Ortiz, Ann Bangerter, Anjan Chakraborty, Dalton Schutte, Jeremy Yeung, Ying Liu, Alicia Woodward-Abel, Emma Bromley, Rui Zhang, Lisa A Brenner, Joseph A Simonetti
Objective: Access to firearms is associated with increased suicide risk. Our aim was to develop a natural language processing approach to characterizing firearm access in clinical records.
Materials and methods: We used clinical notes from 36 685 Veterans Health Administration (VHA) patients between April 10, 2023 and April 10, 2024. We expanded preexisting firearm term sets using subject matter experts and generated 250-character snippets around each firearm term appearing in notes. Annotators labeled 3000 snippets into three classes. Using these annotated snippets, we compared four nonneural machine learning models (random forest, bagging, gradient boosting, logistic regression with ridge penalization) and two versions of Bidirectional Encoder Representations from Transformers, or BERT (specifically, BioBERT and Bio-ClinicalBERT) for classifying firearm access as "definite access", "definitely no access", or "other".
Results: Firearm terms were identified in 36 685 patient records (41.3%), 33.7% of snippets were categorized as definite access, 9.0% as definitely no access, and 57.2% as "other". Among models classifying firearm access, five of six had acceptable performance, with BioBERT and Bio-ClinicalBERT performing best, with F1s of 0.876 (95% confidence interval, 0.874-0.879) and 0.896 (95% confidence interval, 0.894-0.899), respectively.
Discussion and conclusion: Firearm-related terminology is common in the clinical records of VHA patients. The ability to use text to identify and characterize patients' firearm access could enhance suicide prevention efforts, and five of our six models could be used to identify patients for clinical interventions.
{"title":"Comparison of six natural language processing approaches to assessing firearm access in Veterans Health Administration electronic health records.","authors":"Joshua Trujeque, R Adams Dudley, Nathan Mesfin, Nicholas E Ingraham, Isai Ortiz, Ann Bangerter, Anjan Chakraborty, Dalton Schutte, Jeremy Yeung, Ying Liu, Alicia Woodward-Abel, Emma Bromley, Rui Zhang, Lisa A Brenner, Joseph A Simonetti","doi":"10.1093/jamia/ocae169","DOIUrl":"https://doi.org/10.1093/jamia/ocae169","url":null,"abstract":"<p><strong>Objective: </strong>Access to firearms is associated with increased suicide risk. Our aim was to develop a natural language processing approach to characterizing firearm access in clinical records.</p><p><strong>Materials and methods: </strong>We used clinical notes from 36 685 Veterans Health Administration (VHA) patients between April 10, 2023 and April 10, 2024. We expanded preexisting firearm term sets using subject matter experts and generated 250-character snippets around each firearm term appearing in notes. Annotators labeled 3000 snippets into three classes. Using these annotated snippets, we compared four nonneural machine learning models (random forest, bagging, gradient boosting, logistic regression with ridge penalization) and two versions of Bidirectional Encoder Representations from Transformers, or BERT (specifically, BioBERT and Bio-ClinicalBERT) for classifying firearm access as \"definite access\", \"definitely no access\", or \"other\".</p><p><strong>Results: </strong>Firearm terms were identified in 36 685 patient records (41.3%), 33.7% of snippets were categorized as definite access, 9.0% as definitely no access, and 57.2% as \"other\". Among models classifying firearm access, five of six had acceptable performance, with BioBERT and Bio-ClinicalBERT performing best, with F1s of 0.876 (95% confidence interval, 0.874-0.879) and 0.896 (95% confidence interval, 0.894-0.899), respectively.</p><p><strong>Discussion and conclusion: </strong>Firearm-related terminology is common in the clinical records of VHA patients. The ability to use text to identify and characterize patients' firearm access could enhance suicide prevention efforts, and five of our six models could be used to identify patients for clinical interventions.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.
Materials and methods: PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework.
Results: Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity.
Discussion and conclusion: Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.
研究目的本研究旨在:(1) 综述基于机器学习(ML)的急性期后护理(PAC)环境中早期感染诊断和预后预测模型;(2) 确定影响感染相关结果的关键风险预测因素;(3) 检验这些模型的质量和局限性:于 2024 年 2 月检索了 PubMed、Web of Science、Scopus、IEEE Xplore、CINAHL 和 ACM 数字图书馆。符合条件的研究利用 PAC 数据开发并评估了感染相关风险的 ML 模型。数据提取遵循 CHARMS 核对表。质量评估采用 PROBAST 工具。数据综合以社会生态概念框架为指导:共纳入 13 项研究,主要集中在呼吸道感染和疗养院。大多数研究使用了结构化电子健康记录数据回归模型。自 2020 年以来,先进的 ML 算法、多模态数据、生物传感器和临床笔记已成为非结构化数据的重要来源。尽管取得了这些进展,但仍没有足够的证据支持其性能比传统模型有所提高。个体层面的风险预测因素,如认知能力受损、功能下降和心动过速等,被普遍使用,而情境层面的预测因素几乎未被使用,从而限制了模型的公平性。偏差的主要来源包括缺乏外部验证、模型校准不足以及对数据复杂性考虑不足:尽管先进的建模方法在 PAC 环境中的感染相关模型中得到了发展,但支持其优越性的证据仍然有限。未来的研究应利用社会生态学的视角来选择预测因子和构建模型,探索 PAC 中的最佳数据模式和 ML 模型用法,同时确保采用严格的方法并考虑公平性。
{"title":"Machine learning-based infection diagnostic and prognostic models in post-acute care settings: a systematic review.","authors":"Zidu Xu, Danielle Scharp, Mollie Hobensek, Jiancheng Ye, Jungang Zou, Sirui Ding, Jingjing Shang, Maxim Topaz","doi":"10.1093/jamia/ocae278","DOIUrl":"https://doi.org/10.1093/jamia/ocae278","url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.</p><p><strong>Materials and methods: </strong>PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework.</p><p><strong>Results: </strong>Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity.</p><p><strong>Discussion and conclusion: </strong>Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Betina Idnay, Gongbo Zhang, Fangyi Chen, Casey N Ta, Matthew W Schelke, Karen Marder, Chunhua Weng
Objective: This study aims to automate the prediction of Mini-Mental State Examination (MMSE) scores, a widely adopted standard for cognitive assessment in patients with Alzheimer's disease, using natural language processing (NLP) and machine learning (ML) on structured and unstructured EHR data.
Materials and methods: We extracted demographic data, diagnoses, medications, and unstructured clinical visit notes from the EHRs. We used Latent Dirichlet Allocation (LDA) for topic modeling and Term-Frequency Inverse Document Frequency (TF-IDF) for n-grams. In addition, we extracted meta-features such as age, ethnicity, and race. Model training and evaluation employed eXtreme Gradient Boosting (XGBoost), Stochastic Gradient Descent Regressor (SGDRegressor), and Multi-Layer Perceptron (MLP).
Results: We analyzed 1654 clinical visit notes collected between September 2019 and June 2023 for 1000 Alzheimer's disease patients. The average MMSE score was 20, with patients averaging 76.4 years old, 54.7% female, and 54.7% identifying as White. The best-performing model (ie, lowest root mean squared error (RMSE)) is MLP, which achieved an RMSE of 5.53 on the validation set using n-grams, indicating superior prediction performance over other models and feature sets. The RMSE on the test set was 5.85.
Discussion: This study developed a ML method to predict MMSE scores from unstructured clinical notes, demonstrating the feasibility of utilizing NLP to support cognitive assessment. Future work should focus on refining the model and evaluating its clinical relevance across diverse settings.
Conclusion: We contributed a model for automating MMSE estimation using EHR features, potentially transforming cognitive assessment for Alzheimer's patients and paving the way for more informed clinical decisions and cohort identification.
{"title":"Mini-mental status examination phenotyping for Alzheimer's disease patients using both structured and narrative electronic health record features.","authors":"Betina Idnay, Gongbo Zhang, Fangyi Chen, Casey N Ta, Matthew W Schelke, Karen Marder, Chunhua Weng","doi":"10.1093/jamia/ocae274","DOIUrl":"https://doi.org/10.1093/jamia/ocae274","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to automate the prediction of Mini-Mental State Examination (MMSE) scores, a widely adopted standard for cognitive assessment in patients with Alzheimer's disease, using natural language processing (NLP) and machine learning (ML) on structured and unstructured EHR data.</p><p><strong>Materials and methods: </strong>We extracted demographic data, diagnoses, medications, and unstructured clinical visit notes from the EHRs. We used Latent Dirichlet Allocation (LDA) for topic modeling and Term-Frequency Inverse Document Frequency (TF-IDF) for n-grams. In addition, we extracted meta-features such as age, ethnicity, and race. Model training and evaluation employed eXtreme Gradient Boosting (XGBoost), Stochastic Gradient Descent Regressor (SGDRegressor), and Multi-Layer Perceptron (MLP).</p><p><strong>Results: </strong>We analyzed 1654 clinical visit notes collected between September 2019 and June 2023 for 1000 Alzheimer's disease patients. The average MMSE score was 20, with patients averaging 76.4 years old, 54.7% female, and 54.7% identifying as White. The best-performing model (ie, lowest root mean squared error (RMSE)) is MLP, which achieved an RMSE of 5.53 on the validation set using n-grams, indicating superior prediction performance over other models and feature sets. The RMSE on the test set was 5.85.</p><p><strong>Discussion: </strong>This study developed a ML method to predict MMSE scores from unstructured clinical notes, demonstrating the feasibility of utilizing NLP to support cognitive assessment. Future work should focus on refining the model and evaluating its clinical relevance across diverse settings.</p><p><strong>Conclusion: </strong>We contributed a model for automating MMSE estimation using EHR features, potentially transforming cognitive assessment for Alzheimer's patients and paving the way for more informed clinical decisions and cohort identification.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xubing Hao, Xiaojin Li, Yan Huang, Jay Shi, Rashmie Abeysinghe, Cui Tao, Kirk Roberts, Guo-Qiang Zhang, Licong Cui
Objective: SNOMED CT provides a standardized terminology for clinical concepts, allowing cohort queries over heterogeneous clinical data including Electronic Health Records (EHRs). While it is intuitive that missing and inaccurate subtype (or is-a) relations in SNOMED CT reduce the recall and precision of cohort queries, the extent of these impacts has not been formally assessed. This study fills this gap by developing quantitative metrics to measure these impacts and performing statistical analysis on their significance.
Material and methods: We used the Optum de-identified COVID-19 Electronic Health Record dataset. We defined micro-averaged and macro-averaged recall and precision metrics to assess the impact of missing and inaccurate is-a relations on cohort queries. Both practical and simulated analyses were performed. Practical analyses involved 407 missing and 48 inaccurate is-a relations confirmed by domain experts, with statistical testing using Wilcoxon signed-rank tests. Simulated analyses used two random sets of 400 is-a relations to simulate missing and inaccurate is-a relations.
Results: Wilcoxon signed-rank tests from both practical and simulated analyses (P-values < .001) showed that missing is-a relations significantly reduced the micro- and macro-averaged recall, and inaccurate is-a relations significantly reduced the micro- and macro-averaged precision.
Discussion: The introduced impact metrics can assist SNOMED CT maintainers in prioritizing critical hierarchical defects for quality enhancement. These metrics are generally applicable for assessing the quality impact of a terminology's subtype hierarchy on its cohort query applications.
Conclusion: Our results indicate a significant impact of missing and inaccurate is-a relations in SNOMED CT on the recall and precision of cohort queries. Our work highlights the importance of high-quality terminology hierarchy for cohort queries over EHR data and provides valuable insights for prioritizing quality improvements of SNOMED CT's hierarchy.
{"title":"Quantitatively assessing the impact of the quality of SNOMED CT subtype hierarchy on cohort queries.","authors":"Xubing Hao, Xiaojin Li, Yan Huang, Jay Shi, Rashmie Abeysinghe, Cui Tao, Kirk Roberts, Guo-Qiang Zhang, Licong Cui","doi":"10.1093/jamia/ocae272","DOIUrl":"https://doi.org/10.1093/jamia/ocae272","url":null,"abstract":"<p><strong>Objective: </strong>SNOMED CT provides a standardized terminology for clinical concepts, allowing cohort queries over heterogeneous clinical data including Electronic Health Records (EHRs). While it is intuitive that missing and inaccurate subtype (or is-a) relations in SNOMED CT reduce the recall and precision of cohort queries, the extent of these impacts has not been formally assessed. This study fills this gap by developing quantitative metrics to measure these impacts and performing statistical analysis on their significance.</p><p><strong>Material and methods: </strong>We used the Optum de-identified COVID-19 Electronic Health Record dataset. We defined micro-averaged and macro-averaged recall and precision metrics to assess the impact of missing and inaccurate is-a relations on cohort queries. Both practical and simulated analyses were performed. Practical analyses involved 407 missing and 48 inaccurate is-a relations confirmed by domain experts, with statistical testing using Wilcoxon signed-rank tests. Simulated analyses used two random sets of 400 is-a relations to simulate missing and inaccurate is-a relations.</p><p><strong>Results: </strong>Wilcoxon signed-rank tests from both practical and simulated analyses (P-values < .001) showed that missing is-a relations significantly reduced the micro- and macro-averaged recall, and inaccurate is-a relations significantly reduced the micro- and macro-averaged precision.</p><p><strong>Discussion: </strong>The introduced impact metrics can assist SNOMED CT maintainers in prioritizing critical hierarchical defects for quality enhancement. These metrics are generally applicable for assessing the quality impact of a terminology's subtype hierarchy on its cohort query applications.</p><p><strong>Conclusion: </strong>Our results indicate a significant impact of missing and inaccurate is-a relations in SNOMED CT on the recall and precision of cohort queries. Our work highlights the importance of high-quality terminology hierarchy for cohort queries over EHR data and provides valuable insights for prioritizing quality improvements of SNOMED CT's hierarchy.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sabrina Mangal, Lauren Berger, Jean-Marie Bruzzese, Alexandra de la Cruz, Maichou Lor, Imama A Naqvi, Eugenio Solis de Ovando, Nicole Spiegel-Gotsch, Samantha Stonbraker, Adriana Arcia
Information visualizations are increasingly being developed by informatics researchers to communicate health information to lay audiences. For high-quality results, it is advisable to collaborate with creative professionals such as graphic designers, illustrators, or user interface/user experience designers. However, such collaborations are often a novel experience for both parties, each of which may be unfamiliar with the needs and processes of the other. We have coalesced our experiences from both the research and design perspectives to offer practical guidance in hopes of promoting the success of future collaborations. We offer suggestions for determining design needs, communicating with design professionals, and carrying out the design process. We assert that successful collaborations are predicated on careful and intentional planning at the outset of a project, a thorough understanding of each party's scope expertise, clear communication, and ample time for the design process to unfold.
{"title":"Seeing things the same way: perspectives and lessons learned from research-design collaborations.","authors":"Sabrina Mangal, Lauren Berger, Jean-Marie Bruzzese, Alexandra de la Cruz, Maichou Lor, Imama A Naqvi, Eugenio Solis de Ovando, Nicole Spiegel-Gotsch, Samantha Stonbraker, Adriana Arcia","doi":"10.1093/jamia/ocad124","DOIUrl":"10.1093/jamia/ocad124","url":null,"abstract":"<p><p>Information visualizations are increasingly being developed by informatics researchers to communicate health information to lay audiences. For high-quality results, it is advisable to collaborate with creative professionals such as graphic designers, illustrators, or user interface/user experience designers. However, such collaborations are often a novel experience for both parties, each of which may be unfamiliar with the needs and processes of the other. We have coalesced our experiences from both the research and design perspectives to offer practical guidance in hopes of promoting the success of future collaborations. We offer suggestions for determining design needs, communicating with design professionals, and carrying out the design process. We assert that successful collaborations are predicated on careful and intentional planning at the outset of a project, a thorough understanding of each party's scope expertise, clear communication, and ample time for the design process to unfold.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":"542-547"},"PeriodicalIF":4.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9772907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}