High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms.

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-08 DOI:10.1016/j.jhazmat.2024.135461
Xingfeng Cao, Gongduan Fan, Jing Luo, Ling Zhang, Shiyun Wu, Yixin Yao, Kai-Qin Xu
{"title":"High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms.","authors":"Xingfeng Cao, Gongduan Fan, Jing Luo, Ling Zhang, Shiyun Wu, Yixin Yao, Kai-Qin Xu","doi":"10.1016/j.jhazmat.2024.135461","DOIUrl":null,"url":null,"abstract":"<p><p>Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH<sub>2</sub>-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH<sub>2</sub>-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH<sub>2</sub>-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (•O<sub>2</sub><sup>-</sup>) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH2-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH2-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH2-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (•O2-) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用具有优异可见光吸收能力的 Z 型 AgBr/NH2-MIL-125(Ti) 光催化剂高效去除铜绿微囊藻:性能见解与机理。
藻华已成为饮用水生产中的一个普遍问题,威胁着生态系统和人类健康。光催化是一种用于废水处理的前景广阔的高级氧化工艺(AOP)技术,被认为是就地修复藻华的潜在措施。然而,传统的光催化剂通常对可见光的反应有限,而且光生电子-空穴对会迅速重组。在本研究中,我们利用共沉淀法制备了一种具有优异可见光吸收性能的 Z 型 AgBr/NH2-MIL-125(Ti) 复合材料,以高效灭活铜绿微囊藻。在可见光照射 180 分钟后,AgBr/NH2-MIL-125(Ti) 对叶绿素 a 的降解效率为 98.7%,分别比 AgBr 和 NH2-MIL-125(Ti) 的降解率效率高出 3.20 倍和 36.75 倍。此外,即使重复使用五次,其去除率仍能保持在 91.1%。实验结果表明,超氧自由基(-O2-)是主要的活性氧。光催化反应改变了藻细胞的形态和表面电荷,抑制了它们的新陈代谢,破坏了它们的光合作用和抗氧化系统。总之,这项研究为光催化技术在藻华修复中的应用提供了一种前景广阔的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to "Protaetia brevitarsis larvae produce frass that can be used as an additive to immobilize Cd and improve fertility in alkaline soils" [J Hazard Mater 474 (2024) 134379]. High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms. Atmospheric reactive nitrogen conversion kicks off the co-directional and contra-directional effects on PM2.5-O3 pollution. Disentangling external loadings, hydrodynamics and biogeochemical controls on the fate of nitrate in a coastal embayment. Enhancement of fine particle removal through flue gas cooling in a spray tower with packing materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1