首页 > 最新文献

Journal of hazardous materials最新文献

英文 中文
Enrichment and catalysis effect of 2D/2D g-C3N4/Ti3C2 for promoting organic matter degradation and heavy metal reduction in plasma systems: Unveiling the promotion and redox mechanism. 2D/2D g-C3N4/Ti3C2 在等离子体系统中促进有机物降解和重金属还原的富集和催化作用:揭示促进和氧化还原机制。
Pub Date : 2024-11-15 DOI: 10.1016/j.jhazmat.2024.136510
Yawen Wang, Wenxuan Jiang, Nan Jiang, Jie Li, He Guo

This work proposes a novel plasma-assisted 2D/2D g-C3N4/Ti3C2 system for treatment of organics-heavy metals composite wastewater. Unlike traditional materials in plasma system, 2D/2D g-C3N4/Ti3C2 not only improved the mass transfer efficiency of plasma by gathering both reactive species and pollutants onto the surface, but also induced photocatalytic reactions. Besides, the higher specific surface area and faster carrier separation rate can enhance the oxidation and reduction activity, and then promoted organic matter degradation and heavy metal reduction. Remarkably, the removal efficiency of sulfamethoxazole (SMX) and Cr(VI) increased by 16.5 % and 73.1 % respectively when introducing 2D/2D g-C3N4/Ti3C2. Roles of·OH,·H,·O2-, 1O2, e-, and h+ in SMX oxidation and Cr(VI) reduction are clarified. The primary aggregated·OH and 1O2 dominate the degradation of SMX. The influencing factors, synergistic mechanism between plasma and catalyst, and redox mechanism were clarified. This work provides a breakthrough idea for treatment of organics-heavy metals composite wastewater.

本研究提出了一种新型等离子体辅助 2D/2D g-C3N4/Ti3C2 系统,用于处理有机物-重金属复合废水。与等离子体系统中的传统材料不同,2D/2D g-C3N4/Ti3C2 不仅能将活性物种和污染物聚集到等离子体表面,提高等离子体的传质效率,还能诱导光催化反应。此外,更高的比表面积和更快的载流子分离速率可以提高氧化和还原活性,进而促进有机物降解和重金属还原。引入 2D/2D g-C3N4/Ti3C2 后,磺胺甲噁唑(SMX)和六价铬的去除率分别显著提高了 16.5% 和 73.1%。阐明了 OH、-H、-O2-、1O2、e- 和 h+ 在 SMX 氧化和 Cr(VI) 还原中的作用。初级聚集的-OH 和 1O2 主导了 SMX 的降解。阐明了影响因素、等离子体与催化剂之间的协同机制以及氧化还原机制。这项工作为有机物-重金属复合废水的处理提供了一个突破性的思路。
{"title":"Enrichment and catalysis effect of 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> for promoting organic matter degradation and heavy metal reduction in plasma systems: Unveiling the promotion and redox mechanism.","authors":"Yawen Wang, Wenxuan Jiang, Nan Jiang, Jie Li, He Guo","doi":"10.1016/j.jhazmat.2024.136510","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136510","url":null,"abstract":"<p><p>This work proposes a novel plasma-assisted 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> system for treatment of organics-heavy metals composite wastewater. Unlike traditional materials in plasma system, 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub> not only improved the mass transfer efficiency of plasma by gathering both reactive species and pollutants onto the surface, but also induced photocatalytic reactions. Besides, the higher specific surface area and faster carrier separation rate can enhance the oxidation and reduction activity, and then promoted organic matter degradation and heavy metal reduction. Remarkably, the removal efficiency of sulfamethoxazole (SMX) and Cr(VI) increased by 16.5 % and 73.1 % respectively when introducing 2D/2D g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>. Roles of·OH,·H,·O<sub>2</sub><sup>-</sup>, <sup>1</sup>O<sub>2</sub>, e<sup>-</sup>, and h<sup>+</sup> in SMX oxidation and Cr(VI) reduction are clarified. The primary aggregated·OH and <sup>1</sup>O<sub>2</sub> dominate the degradation of SMX. The influencing factors, synergistic mechanism between plasma and catalyst, and redox mechanism were clarified. This work provides a breakthrough idea for treatment of organics-heavy metals composite wastewater.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136510"},"PeriodicalIF":0.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variation in photoactivity of dissolved black carbon during the fractionation process and the role in the photodegradation of various antibiotics. 分馏过程中溶解黑碳光活性的变化及其在光降解各种抗生素中的作用。
Pub Date : 2024-11-14 DOI: 10.1016/j.jhazmat.2024.136435
Yaqi Kang, Zhenkun Chu, Xiaoyun Xie, Liangyu Li, Jiani Hu, Siting Li, Zhaowei Wang

The composition of dissolved black carbon (DBC) could be influenced by adsorption on minerals, subsequently affecting DBC's photoactivity and the photoconversion of contaminants. This study investigated the changes in photoactivity of DBC after absorption on ferrihydrite at Fe/C ratios of 0, 1.75, 7.50, and 11.25, compared the influences of DBC0 and DBC7.50 on the photodegradation of four typical antibiotics (AB) including sulfadiazine, tetracycline, ofloxacin, and chloramphenicol. The selective adsorption led to the compounds with high aromaticity, high oxidation states, and more oxygen-containing functional groups being more favorably adsorbed on ferrihydrite, further causing the steady-state concentrations of 3DBC*, 1O2, and •OH respectively to drop from 1.83 × 10-13 M, 7.45 × 10-13 M, and 3.32 × 10-16 M in DBC0 to 1.22 × 10-13 M, 0.93 × 10-13 M and 2.30 × 10-16 M in DBC11.25, while the light screening effect factor increased from 0.740-0.921 in DBC0 with above four antibiotics to 0.775-0.970 for that of DBC11.25. Unexpectedly, DBC after adsorption played a dual role in the photodegradation of various antibiotics. This difference might be caused by antibiotics' chemical composition, functional groups interacting with reactive intermediates, and the overlap in UV-vis spectra between antibiotics and DBC. Our data are valuable for understanding the dynamic roles of DBC in the photodegradation of antibiotics.

溶解黑碳(DBC)的组成可能会受到矿物吸附的影响,进而影响 DBC 的光活性和污染物的光化学转化。本研究考察了 DBC 被铁水石吸附后在铁/碳比为 0、1.75、7.50 和 11.25 时的光活性变化,比较了 DBC0 和 DBC7.50 对磺胺嘧啶、四环素、氧氟沙星和氯霉素等四种典型抗生素(AB)光降解的影响。选择性吸附使芳香度高、氧化态高、含氧官能团多的化合物更有利于吸附在铁酸盐上,进一步使 3DBC*、1O2 和 -OH 的稳态浓度分别从 1.83 × 10-13 M、7.45 × 10-13 M 和 3.32 × 10-16 M 下降到 DBC11.25 的 1.22 × 10-13 M、0.93 × 10-13 M 和 2.30 × 10-16 M,而光屏蔽效应因子则从含有上述四种抗生素的 DBC0 的 0.740-0.921 上升到 DBC11.25 的 0.775-0.970。出乎意料的是,吸附后的 DBC 在各种抗生素的光降解过程中发挥了双重作用。造成这种差异的原因可能是抗生素的化学成分、与反应中间体相互作用的官能团以及抗生素和 DBC 的紫外可见光谱重叠。我们的数据对于了解 DBC 在抗生素光降解过程中的动态作用很有价值。
{"title":"Variation in photoactivity of dissolved black carbon during the fractionation process and the role in the photodegradation of various antibiotics.","authors":"Yaqi Kang, Zhenkun Chu, Xiaoyun Xie, Liangyu Li, Jiani Hu, Siting Li, Zhaowei Wang","doi":"10.1016/j.jhazmat.2024.136435","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136435","url":null,"abstract":"<p><p>The composition of dissolved black carbon (DBC) could be influenced by adsorption on minerals, subsequently affecting DBC's photoactivity and the photoconversion of contaminants. This study investigated the changes in photoactivity of DBC after absorption on ferrihydrite at Fe/C ratios of 0, 1.75, 7.50, and 11.25, compared the influences of DBC<sub>0</sub> and DBC<sub>7.50</sub> on the photodegradation of four typical antibiotics (AB) including sulfadiazine, tetracycline, ofloxacin, and chloramphenicol. The selective adsorption led to the compounds with high aromaticity, high oxidation states, and more oxygen-containing functional groups being more favorably adsorbed on ferrihydrite, further causing the steady-state concentrations of <sup>3</sup>DBC*, <sup>1</sup>O<sub>2</sub>, and •OH respectively to drop from 1.83 × 10<sup>-13</sup> M, 7.45 × 10<sup>-13</sup> M, and 3.32 × 10<sup>-16</sup> M in DBC<sub>0</sub> to 1.22 × 10<sup>-13</sup> M, 0.93 × 10<sup>-13</sup> M and 2.30 × 10<sup>-16</sup> M in DBC<sub>11.25</sub>, while the light screening effect factor increased from 0.740-0.921 in DBC<sub>0</sub> with above four antibiotics to 0.775-0.970 for that of DBC<sub>11.25</sub>. Unexpectedly, DBC after adsorption played a dual role in the photodegradation of various antibiotics. This difference might be caused by antibiotics' chemical composition, functional groups interacting with reactive intermediates, and the overlap in UV-vis spectra between antibiotics and DBC. Our data are valuable for understanding the dynamic roles of DBC in the photodegradation of antibiotics.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136435"},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene biomarkers in estuarine oysters indicate pollution profiles of metals, brominated flame retardants, and poly- and perfluoroalkyl substances in and near the Laizhou Bay. 河口牡蛎的基因生物标志物显示了莱州湾及其附近地区的金属、溴化阻燃剂、多氟和全氟烷基物质污染概况。
Pub Date : 2024-11-12 DOI: 10.1016/j.jhazmat.2024.136484
Changlin Song, Liping You, Jianhui Tang, Shuang Wang, Chenglong Ji, Junfei Zhan, Bo Su, Fei Li, Huifeng Wu

The Laizhou Bay (LZB) is of ecological and fishery importance. The discharge of effluents containing numerous pollutants into the LZB via rivers poses significant risks to ecosystem and human health. Estuarine biomonitoring is therefore crucial for assessing the contribution of rivers to coastal pollution and their impacts on species. Estuarine oyster Crassostrea gigas is a preferable bioindicator to pollution conditions. This study measured accumulation of contaminants and expression levels of gene biomarkers in the LZB and Northern Shandong Peninsula (NSP) oysters. The LZB oysters accumulated higher levels of brominated flame retardants (BFRs) and poly- and perfluoroalkyl substances (PFAS), while NSP oysters exhibited greater accumulation of heavy metals. Decabromodiphenyl ethane was the dominant BFR, while perfluorooctanoic acid and perfluoro-2-methoxyacetic acid were the dominant PFASs in oysters. The expression of gene biomarkers effectively distinguished the LZB and NSP oysters, with CYP2 subfamilies expression correlating with BFRs and PFASs and metallothionein expression indicating heavy metals. The reproductive endocrine and neuroendocrine-immune systems in oysters might be the targets of BFRs and heavy metal pollution, respectively. The negative correlation between contaminant accumulation and gene expression might be explained by adaptive evolution, emphasizing the need to consider genetic diversity in ecological risk assessments.

莱州湾(LZB)具有重要的生态和渔业价值。含有多种污染物的污水通过河流排入莱州湾,对生态系统和人类健康构成重大风险。因此,河口生物监测对于评估河流对沿岸污染的贡献及其对物种的影响至关重要。河口牡蛎(Crassostrea gigas)是污染状况的理想生物指标。本研究测量了湛江和山东半岛北部(NSP)牡蛎体内污染物的积累和基因生物标志物的表达水平。LZB牡蛎积累了较高水平的溴化阻燃剂(BFRs)和多氟及全氟烷基物质(PFAS),而NSP牡蛎则积累了较多的重金属。十溴二苯基乙烷是牡蛎体内最主要的溴化阻燃剂,而全氟辛酸和全氟-2-甲氧基乙酸则是牡蛎体内最主要的全氟烷基物质。基因生物标志物的表达有效地区分了 LZB 和 NSP 牡蛎,CYP2 亚家族的表达与溴化阻燃剂和全氟辛烷磺酸相关,金属硫蛋白的表达表明重金属。牡蛎的生殖内分泌系统和神经内分泌免疫系统可能分别是溴化阻燃剂和重金属污染的目标。污染物积累与基因表达之间的负相关可能是由适应性进化造成的,这强调了在生态风险评估中考虑遗传多样性的必要性。
{"title":"Gene biomarkers in estuarine oysters indicate pollution profiles of metals, brominated flame retardants, and poly- and perfluoroalkyl substances in and near the Laizhou Bay.","authors":"Changlin Song, Liping You, Jianhui Tang, Shuang Wang, Chenglong Ji, Junfei Zhan, Bo Su, Fei Li, Huifeng Wu","doi":"10.1016/j.jhazmat.2024.136484","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136484","url":null,"abstract":"<p><p>The Laizhou Bay (LZB) is of ecological and fishery importance. The discharge of effluents containing numerous pollutants into the LZB via rivers poses significant risks to ecosystem and human health. Estuarine biomonitoring is therefore crucial for assessing the contribution of rivers to coastal pollution and their impacts on species. Estuarine oyster Crassostrea gigas is a preferable bioindicator to pollution conditions. This study measured accumulation of contaminants and expression levels of gene biomarkers in the LZB and Northern Shandong Peninsula (NSP) oysters. The LZB oysters accumulated higher levels of brominated flame retardants (BFRs) and poly- and perfluoroalkyl substances (PFAS), while NSP oysters exhibited greater accumulation of heavy metals. Decabromodiphenyl ethane was the dominant BFR, while perfluorooctanoic acid and perfluoro-2-methoxyacetic acid were the dominant PFASs in oysters. The expression of gene biomarkers effectively distinguished the LZB and NSP oysters, with CYP2 subfamilies expression correlating with BFRs and PFASs and metallothionein expression indicating heavy metals. The reproductive endocrine and neuroendocrine-immune systems in oysters might be the targets of BFRs and heavy metal pollution, respectively. The negative correlation between contaminant accumulation and gene expression might be explained by adaptive evolution, emphasizing the need to consider genetic diversity in ecological risk assessments.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136484"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut microbiota modulation by L-Fucose as a strategy to alleviate Ochratoxin A toxicity on primordial follicle formation. 用L-岩藻糖调节肠道微生物群,减轻赭曲霉毒素A对原始卵泡形成的毒性。
Pub Date : 2024-11-12 DOI: 10.1016/j.jhazmat.2024.136469
Ruiting Wang, Jie Song, Muyu Cai, Yuan Xue, Jing Liu, Ning Zuo, Massimo De Felici, Junjie Wang, Wei Shen, Xiaofeng Sun

In this study, we investigated the potential benefits of L-Fucose administration to pregnant mice exposed to Ochratoxin A (OTA), a widespread mycotoxin, producing ovarian damage in offspring. The results showed that administration of 3.5 μg/d OTA induced alterations in intestinal tissues and gut microbiota of pregnant mice, leading to heightened local and systemic inflammation. This inflammatory affected the ovaries of their 3 dpp offspring, in which elevated levels of LPS and ROS were found associated to significant decreased oocyte count and impaired primordial follicle assembly. Moreover, mRNA-Seq analysis showed significant changes in ovarian transcriptomes linked to various GO terms and KEGG pathways, notably ferroptosis, a recognized form of cell death observed. Interestingly, administration of 0.3 g/kg b. w. L-Fucose following OTA exposure mitigated these effects on intestinal tissues and gut microbiota in mothers and on the offspring's ovaries. Similar benefits were obtained by gut microbiota transplantation from L-Fucose-treated pregnant females into OTA-exposed mothers. These findings suggest that inflammatory impact of OTA on maternal intestine/gut can pass to the fetus causing offspring ovary defects and support the use of L-Fucose as adjuvant to counteract the adverse effects of mycotoxins on the gut microbiota, particularly reference to those affecting reproductive organs.

赭曲霉毒素 A(OTA)是一种广泛存在的霉菌毒素,会对后代造成卵巢损伤。在这项研究中,我们调查了给暴露于 OTA 的怀孕小鼠服用左旋葡萄糖的潜在益处。研究结果表明,3.5 μg/d 的 OTA 会引起怀孕小鼠肠道组织和肠道微生物群的改变,导致局部和全身炎症的加剧。这种炎症影响到妊娠 3 dpp 后代的卵巢,发现 LPS 和 ROS 水平升高与卵母细胞数量显著减少和原始卵泡组装受损有关。此外,mRNA-Seq 分析表明卵巢转录组发生了显著变化,这些变化与各种 GO 术语和 KEGG 通路有关,特别是铁突变,这是一种公认的细胞死亡形式。有趣的是,在暴露于 OTA 后服用 0.3 g/kg b. w.暴露于 OTA 后,L-岩藻糖减轻了对母亲肠道组织和肠道微生物群以及后代卵巢的影响。将经过 L-岩藻糖处理的孕妇的肠道微生物群移植到暴露于 OTA 的母亲体内,也能获得类似的益处。这些研究结果表明,OTA 对母体肠道/肠道的炎症影响可传递给胎儿,导致后代卵巢缺陷,并支持使用 L-岩藻糖作为佐剂来抵消霉菌毒素对肠道微生物群的不利影响,特别是对生殖器官的影响。
{"title":"Gut microbiota modulation by L-Fucose as a strategy to alleviate Ochratoxin A toxicity on primordial follicle formation.","authors":"Ruiting Wang, Jie Song, Muyu Cai, Yuan Xue, Jing Liu, Ning Zuo, Massimo De Felici, Junjie Wang, Wei Shen, Xiaofeng Sun","doi":"10.1016/j.jhazmat.2024.136469","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136469","url":null,"abstract":"<p><p>In this study, we investigated the potential benefits of L-Fucose administration to pregnant mice exposed to Ochratoxin A (OTA), a widespread mycotoxin, producing ovarian damage in offspring. The results showed that administration of 3.5 μg/d OTA induced alterations in intestinal tissues and gut microbiota of pregnant mice, leading to heightened local and systemic inflammation. This inflammatory affected the ovaries of their 3 dpp offspring, in which elevated levels of LPS and ROS were found associated to significant decreased oocyte count and impaired primordial follicle assembly. Moreover, mRNA-Seq analysis showed significant changes in ovarian transcriptomes linked to various GO terms and KEGG pathways, notably ferroptosis, a recognized form of cell death observed. Interestingly, administration of 0.3 g/kg b. w. L-Fucose following OTA exposure mitigated these effects on intestinal tissues and gut microbiota in mothers and on the offspring's ovaries. Similar benefits were obtained by gut microbiota transplantation from L-Fucose-treated pregnant females into OTA-exposed mothers. These findings suggest that inflammatory impact of OTA on maternal intestine/gut can pass to the fetus causing offspring ovary defects and support the use of L-Fucose as adjuvant to counteract the adverse effects of mycotoxins on the gut microbiota, particularly reference to those affecting reproductive organs.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136469"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimony-bearing schwertmannite transformation to goethite: A driver of antimony mobilization in acid mine drainage. 含锑的闪长岩转变为网纹石:酸性矿井排水中锑迁移的驱动因素。
Pub Date : 2024-11-12 DOI: 10.1016/j.jhazmat.2024.136487
Mohammad Rastegari, Niloofar Karimian, Scott G Johnston, Girish Choppala, Mona Hosseinpour Moghaddam, Edward D Burton

Antimony(V) mobility in acid mine drainage (AMD) is often controlled by sorption and coprecipitation with schwertmannite - a poorly-ordered Fe(III) oxyhydroxysulfate mineral. However, due to its metastable nature, schwertmannite transforms over time to more thermodynamically stable Fe(III) phases, such as goethite. This study examines how transformation of Sb(V)-bearing schwertmannite to goethite impacts Sb(V) mobility, while also assessing the role that Sb(V) may play in stabilizing schwertmannite against such transformation. To address these aims, Sb(V)-free, Sb(V)-sorbed and Sb(V)-coprecipitated schwertmannite were allowed to undergo partial transformation to goethite under acid sulfate conditions. Iron K-edge EXAFS spectroscopy revealed that sorbed and coprecipitated Sb(V) partly stabilized schwertmannite against transformation. The onset of schwertmannite transformation to goethite was found to drive clear mobilization of Sb(V) into solution, regardless of the Sb(V) loading or whether Sb(V) was initially sorbed or coprecipitated with the precursor schwertmannite. This initial phase of Sb(V) mobilization was followed by subsequent solid-phase recapture of the released Sb(V), with Sb K-edge EXAFS spectroscopy revealing that this process involved Sb(V) incorporation into the newly-formed goethite. Our findings show that, although schwertmannite transformation to goethite is partially inhibited by co-existing Sb(V), the initial stage of this transformation process drives significant Sb(V) mobilization in AMD systems.

锑(V)在酸性矿井排水(AMD)中的流动性通常受吸附和与施瓦特曼矿(一种无序的氧化羟基硫酸铁(III)矿物)共沉淀的控制。然而,由于其易变性,随着时间的推移,schwertmannite 会转变为热力学上更稳定的铁(III)相,如鹅卵石。本研究探讨了含Sb(V)的石榴石向鹅绿泥石的转化如何影响Sb(V)的迁移率,同时还评估了Sb(V)在稳定石榴石防止这种转化方面可能发挥的作用。为了实现这些目标,我们让不含 Sb(V)、Sb(V)吸附和 Sb(V)共沉淀的白云母在酸性硫酸盐条件下部分转化为网纹石。铁的 K-edge EXAFS 光谱显示,吸附和共沉淀的 Sb(V) 部分稳定了希沃特曼石,使其免于转化。研究发现,无论 Sb(V)的负载量是多少,也无论 Sb(V)最初是吸附在前驱体石锰矿上还是与前驱体石锰矿共沉淀在一起,石锰矿开始向网纹石转化时都会明显地将 Sb(V)迁移到溶液中。Sb K-edge EXAFS 光谱显示,这一过程涉及将 Sb(V)掺入新形成的网纹石中。我们的研究结果表明,虽然共存的 Sb(V)会部分抑制施瓦格曼矿向网纹石的转化,但这一转化过程的初始阶段会推动 AMD 系统中 Sb(V)的大量迁移。
{"title":"Antimony-bearing schwertmannite transformation to goethite: A driver of antimony mobilization in acid mine drainage.","authors":"Mohammad Rastegari, Niloofar Karimian, Scott G Johnston, Girish Choppala, Mona Hosseinpour Moghaddam, Edward D Burton","doi":"10.1016/j.jhazmat.2024.136487","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136487","url":null,"abstract":"<p><p>Antimony(V) mobility in acid mine drainage (AMD) is often controlled by sorption and coprecipitation with schwertmannite - a poorly-ordered Fe(III) oxyhydroxysulfate mineral. However, due to its metastable nature, schwertmannite transforms over time to more thermodynamically stable Fe(III) phases, such as goethite. This study examines how transformation of Sb(V)-bearing schwertmannite to goethite impacts Sb(V) mobility, while also assessing the role that Sb(V) may play in stabilizing schwertmannite against such transformation. To address these aims, Sb(V)-free, Sb(V)-sorbed and Sb(V)-coprecipitated schwertmannite were allowed to undergo partial transformation to goethite under acid sulfate conditions. Iron K-edge EXAFS spectroscopy revealed that sorbed and coprecipitated Sb(V) partly stabilized schwertmannite against transformation. The onset of schwertmannite transformation to goethite was found to drive clear mobilization of Sb(V) into solution, regardless of the Sb(V) loading or whether Sb(V) was initially sorbed or coprecipitated with the precursor schwertmannite. This initial phase of Sb(V) mobilization was followed by subsequent solid-phase recapture of the released Sb(V), with Sb K-edge EXAFS spectroscopy revealing that this process involved Sb(V) incorporation into the newly-formed goethite. Our findings show that, although schwertmannite transformation to goethite is partially inhibited by co-existing Sb(V), the initial stage of this transformation process drives significant Sb(V) mobilization in AMD systems.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136487"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic insights into the pH-driven radical transformation of the Fe(II)/nCP in groundwater remediation. 对 pH 值驱动的 Fe(II)/nCP 在地下水修复中的自由基转化机理的深入研究。
Pub Date : 2024-11-12 DOI: 10.1016/j.jhazmat.2024.136334
Jinsong Chen, Hui Ma, Haoyu Luo, Shengyan Pu

Calcium peroxide nanoparticles (nCP) as a versatile and safe solid H2O2 source, have attracted significant research interst for their application potential in groundwater remediation. Compared to the traditional Fenton system, the nCP-based Fenton-like system has a wider pH-working window for contaminants degradation. This results from the dominant radical transformation under different pH. Unlike the traditional Fenton system which is only effective in acid conditions with hydroxyl radical (•OH) as the main active species, the release of H2O2 and O2 from nCP provides multiple contaminants degradation pathways. In acidic environments, •OH and Fe(IV) predominate as the active species, facilitated by substantial H2O2 production which activates the Fenton reaction. In neutral or alkaline conditions, the production of H2O2 was dramatically decreased. While the O2 released from nCP can be catalyzed by Fe(II) to form superoxide radical (•O2-), which subsequently generate singlet oxygen (1O2). The formation pathway of •O2- was tracked by O18 isotope labeling experiment. The impact of the water matrix on radical generation in the Fe(II)/nCP Fenton-like system was also studied. This research deepens the understanding of the radical formation mechanisms in nCP-based Fenton-like system, offering insights to support their application in remediating contaminated groundwater.

过氧化钙纳米粒子(nCP)作为一种多功能、安全的固体 H2O2 源,其在地下水修复中的应用潜力吸引了大量研究人员的关注。与传统的 Fenton 系统相比,基于 nCP 的类 Fenton 系统具有更宽的污染物降解 pH 值工作窗口。这是因为在不同的 pH 值下,自由基转化占主导地位。传统的芬顿系统只在酸性条件下有效,其主要活性物质是羟基自由基(-OH),而 nCP 则不同,它释放的 H2O2 和 O2 提供了多种污染物降解途径。在酸性环境中,-OH 和 Fe(IV)是主要的活性物质,大量 H2O2 的产生激活了芬顿反应。而在中性或碱性条件下,H2O2 的产生量则大幅减少。而从 nCP 中释放出的 O2 可在 Fe(II)的催化下形成超氧自由基(-O2-),随后产生单线态氧(1O2)。O18 同位素标记实验跟踪了 -O2- 的形成途径。此外,还研究了水基质对 Fe(II)/nCP Fenton-like 系统中自由基生成的影响。这项研究加深了人们对基于 nCP 的 Fenton-like 系统中自由基形成机制的理解,为其在污染地下水修复中的应用提供了启示。
{"title":"Mechanistic insights into the pH-driven radical transformation of the Fe(II)/nCP in groundwater remediation.","authors":"Jinsong Chen, Hui Ma, Haoyu Luo, Shengyan Pu","doi":"10.1016/j.jhazmat.2024.136334","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136334","url":null,"abstract":"<p><p>Calcium peroxide nanoparticles (nCP) as a versatile and safe solid H<sub>2</sub>O<sub>2</sub> source, have attracted significant research interst for their application potential in groundwater remediation. Compared to the traditional Fenton system, the nCP-based Fenton-like system has a wider pH-working window for contaminants degradation. This results from the dominant radical transformation under different pH. Unlike the traditional Fenton system which is only effective in acid conditions with hydroxyl radical (•OH) as the main active species, the release of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub> from nCP provides multiple contaminants degradation pathways. In acidic environments, •OH and Fe(IV) predominate as the active species, facilitated by substantial H<sub>2</sub>O<sub>2</sub> production which activates the Fenton reaction. In neutral or alkaline conditions, the production of H<sub>2</sub>O<sub>2</sub> was dramatically decreased. While the O<sub>2</sub> released from nCP can be catalyzed by Fe(II) to form superoxide radical (•O<sub>2</sub><sup>-</sup>), which subsequently generate singlet oxygen (<sup>1</sup>O<sub>2</sub>). The formation pathway of •O<sub>2</sub><sup>-</sup> was tracked by O<sup>18</sup> isotope labeling experiment. The impact of the water matrix on radical generation in the Fe(II)/nCP Fenton-like system was also studied. This research deepens the understanding of the radical formation mechanisms in nCP-based Fenton-like system, offering insights to support their application in remediating contaminated groundwater.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136334"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction. 评估土壤环境中戊硫磷的立体选择性生物活性和生物毒性,以提高药效和减少危害。
Pub Date : 2024-11-12 DOI: 10.1016/j.jhazmat.2024.136476
Kuan Fang, Tong Liu, Guo Tian, Wei Sun, Xiangwei You, Xiuguo Wang

Penthiopyrad, a chiral pesticide, has been widely used in agricultural production. However, systematic evaluation of stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment is insufficient. In this study, the stereoselective bioactivity of penthiopyrad against three soil-borne disease pathogens and its stereoselective biotoxicity to soil non-target organisms were investigated. The present results showed that the bioactivities of S-penthiopyrad were 546, 76 and 1.1-fold higher than those of R-penthiopyrad due to their different interaction modes with SDH in different target pathogens. S-penthiopyrad was more persistent in the soil environment and had stronger bioaccumulation than R-penthiopyrad. The accumulation of penthiopyrad in earthworms induced the response of detoxification system, resulting in the significant increases in the activity of detoxifying enzymes, such as GST, CarE, and CYP450. Additionally, both S-penthiopyrad and R-penthiopyrad induced cell apoptosis, intestinal damage and differentially expressed genes in earthworms, especially S-penthiopyrad. Furthermore, S-penthiopyrad has stronger binding capacity with COL6A and ACE proteins, while R-penthiopyrad has stronger binding capacity with CYP450 family proteins, which may be the main reason for the differences in biotoxicity between PEN enantiomers. Considering the differences in bioactivity and biotoxicity of penthiopyrad enantiomers, as well as the modes of action of pesticides on target and non-target organisms, S-penthiopyrad has greater potential for future development.

Penthiopyrad 是一种手性杀虫剂,已被广泛应用于农业生产。然而,对戊噻菌胺在土壤环境中的立体选择性生物活性和生物毒性的系统评价尚不充分。本研究考察了苯噻菌胺对三种土传病原菌的立体选择性生物活性及其对土壤非靶标生物的立体选择性生物毒性。结果表明,由于 S-penthiopyrad 与不同目标病原体中 SDH 的作用模式不同,其生物活性分别是 R-penthiopyrad 的 546 倍、76 倍和 1.1 倍。与 R-penthiopyrad 相比,S-penthiopyrad 在土壤环境中的持久性更强,生物累积性也更强。苯噻菌胺在蚯蚓体内的积累诱导了解毒系统的反应,导致 GST、CarE 和 CYP450 等解毒酶的活性显著增加。此外,S-吡噻菌胺和 R-吡噻菌胺都能诱导蚯蚓细胞凋亡、肠道损伤和不同基因的表达,尤其是 S-吡噻菌胺。此外,S-吡蚜酮与 COL6A 和 ACE 蛋白的结合能力更强,而 R-吡蚜酮与 CYP450 家族蛋白的结合能力更强,这可能是 PEN 对映体之间生物毒性不同的主要原因。考虑到 Penthiopyrad 对映体在生物活性和生物毒性方面的差异,以及农药对目标生物和非目标生物的作用模式,S-penthiopyrad 具有更大的未来开发潜力。
{"title":"Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction.","authors":"Kuan Fang, Tong Liu, Guo Tian, Wei Sun, Xiangwei You, Xiuguo Wang","doi":"10.1016/j.jhazmat.2024.136476","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136476","url":null,"abstract":"<p><p>Penthiopyrad, a chiral pesticide, has been widely used in agricultural production. However, systematic evaluation of stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment is insufficient. In this study, the stereoselective bioactivity of penthiopyrad against three soil-borne disease pathogens and its stereoselective biotoxicity to soil non-target organisms were investigated. The present results showed that the bioactivities of S-penthiopyrad were 546, 76 and 1.1-fold higher than those of R-penthiopyrad due to their different interaction modes with SDH in different target pathogens. S-penthiopyrad was more persistent in the soil environment and had stronger bioaccumulation than R-penthiopyrad. The accumulation of penthiopyrad in earthworms induced the response of detoxification system, resulting in the significant increases in the activity of detoxifying enzymes, such as GST, CarE, and CYP450. Additionally, both S-penthiopyrad and R-penthiopyrad induced cell apoptosis, intestinal damage and differentially expressed genes in earthworms, especially S-penthiopyrad. Furthermore, S-penthiopyrad has stronger binding capacity with COL6A and ACE proteins, while R-penthiopyrad has stronger binding capacity with CYP450 family proteins, which may be the main reason for the differences in biotoxicity between PEN enantiomers. Considering the differences in bioactivity and biotoxicity of penthiopyrad enantiomers, as well as the modes of action of pesticides on target and non-target organisms, S-penthiopyrad has greater potential for future development.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136476"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The successive reduction of iodate to iodide driven by iron redox cycling. 在铁氧化还原循环的驱动下,碘酸根连续还原成碘化物。
Pub Date : 2024-11-08 DOI: 10.1016/j.jhazmat.2024.136436
Siqi Zhu, Zhou Jiang, Yongguang Jiang, Yiran Dong, Junxia Li, Liang Shi

Ferrous iron (Fe(II)) produced by microbial Fe(III) reduction and reactive oxygen species (ROS) generated from aerobic Fe(II) oxidation can mediate iodate (IO3-) reduction and iodide (I-) oxidation, respectively. Nevertheless, how Fe redox cycling under redox fluctuating conditions drives transformation of iodine species remain unclear. In this study, Shewanella oneidensis MR-1 wildtype (WT) and its mutant △dmsEFAB, which lost the ability to enzymatically reduce IO3-, were chosen to conduct ferrihydrite/goethite/nontronite culture experiments under consecutive cycles of anoxic reduction of Fe(III) and re-oxidation of Fe(II) by O2 to reveal the role of Fe redox cycling in the transformation of iodine species. The results showed that both surface-adsorbed and mineral structural Fe(II) chemically reduced IO3-. Chemical IO3- reduction by biogenic Fe(II) was slower than enzymatic IO3- reduction by WT. Compared to △dmsEFAB cultures, WT cultures all showed higher Fe(II) concentrations under anoxic conditions but lower cumulative •OH under oxic conditions, which imply the chemical reaction between I- and ROS. I- oxidation by ROS, however, did not lead to a significant production of IO3- compared with I- formed under anoxic conditions. Consequently, Fe redox cycling successively reduced IO3- to I-, which highlights vital roles of Fe(III)-reducing bacteria in I- formation and mobilization in environments.

微生物铁(III)还原产生的亚铁(Fe(II))和有氧铁(II)氧化产生的活性氧(ROS)可分别介导碘酸根(IO3-)还原和碘化物(I-)氧化。然而,氧化还原波动条件下的铁氧化还原循环如何驱动碘物种的转化仍不清楚。本研究选择了Shewanella oneidensis MR-1 野生型(WT)及其突变体△dmsEFAB(该突变体失去了酶还原IO3-的能力),在缺氧还原Fe(III)和O2再氧化Fe(II)的连续循环条件下进行亚铁/鹅卵石/非铁矿石培养实验,以揭示铁氧化还原循环在碘物种转化中的作用。结果表明,表面吸附的和矿物结构的 Fe(II) 都能化学还原 IO3-。生物源铁(II)化学还原 IO3- 的速度比 WT 酶还原 IO3- 的速度慢。与△dmsEFAB培养物相比,WT培养物在缺氧条件下都表现出较高的Fe(II)浓度,但在缺氧条件下累积的-OH较低,这意味着I-与ROS之间发生了化学反应。然而,与缺氧条件下形成的 I- 相比,ROS 氧化 I- 并未导致 IO3- 的大量产生。因此,铁氧化还原循环将 IO3- 连续还原为 I-,这凸显了铁(III)还原细菌在环境中 I-的形成和迁移过程中的重要作用。
{"title":"The successive reduction of iodate to iodide driven by iron redox cycling.","authors":"Siqi Zhu, Zhou Jiang, Yongguang Jiang, Yiran Dong, Junxia Li, Liang Shi","doi":"10.1016/j.jhazmat.2024.136436","DOIUrl":"https://doi.org/10.1016/j.jhazmat.2024.136436","url":null,"abstract":"<p><p>Ferrous iron (Fe(II)) produced by microbial Fe(III) reduction and reactive oxygen species (ROS) generated from aerobic Fe(II) oxidation can mediate iodate (IO<sub>3</sub><sup>-</sup>) reduction and iodide (I<sup>-</sup>) oxidation, respectively. Nevertheless, how Fe redox cycling under redox fluctuating conditions drives transformation of iodine species remain unclear. In this study, Shewanella oneidensis MR-1 wildtype (WT) and its mutant △dmsEFAB, which lost the ability to enzymatically reduce IO<sub>3</sub><sup>-</sup>, were chosen to conduct ferrihydrite/goethite/nontronite culture experiments under consecutive cycles of anoxic reduction of Fe(III) and re-oxidation of Fe(II) by O<sub>2</sub> to reveal the role of Fe redox cycling in the transformation of iodine species. The results showed that both surface-adsorbed and mineral structural Fe(II) chemically reduced IO<sub>3</sub><sup>-</sup>. Chemical IO<sub>3</sub><sup>-</sup> reduction by biogenic Fe(II) was slower than enzymatic IO<sub>3</sub><sup>-</sup> reduction by WT. Compared to △dmsEFAB cultures, WT cultures all showed higher Fe(II) concentrations under anoxic conditions but lower cumulative •OH under oxic conditions, which imply the chemical reaction between I<sup>-</sup> and ROS. I<sup>-</sup> oxidation by ROS, however, did not lead to a significant production of IO<sub>3</sub><sup>-</sup> compared with I<sup>-</sup> formed under anoxic conditions. Consequently, Fe redox cycling successively reduced IO<sub>3</sub><sup>-</sup> to I<sup>-</sup>, which highlights vital roles of Fe(III)-reducing bacteria in I<sup>-</sup> formation and mobilization in environments.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136436"},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic exploration of COVlD-19 antiviral drug ritonavir on anaerobic digestion through experimental validation coupled with metagenomics analysis. 通过实验验证和元基因组学分析,探索 COVlD-19 型抗病毒药物利托那韦对厌氧消化的作用机制。
Pub Date : 2024-11-05 Epub Date: 2024-08-22 DOI: 10.1016/j.jhazmat.2024.135603
Ruming Wang, Zhuoqin Wang, Haiping Yuan, Chunxing Li, Nanwen Zhu

Aggregation of antiviral drugs (ATVs) in waste activated sludge (WAS) poses considerable environmental risk, so it is crucial to understand the behavior of these agents during WAS treatment. This study investigated the effects of ritonavir (RIT), an ATV used to treat human immunodeficiency virus infection and coronavirus disease 2019, on anaerobic digestion (AD) of WAS to reveal the mechanisms by which it interferes with anaerobic flora. The dosage influence results showed that methane production in AD of WAS decreased by 46.56 % when RIT concentration was increased to 1000 μg/kg total suspended solids (TSS). The AD staging test revealed that RIT mainly stimulated microbial synthesis of the extracellular polymeric substance (EPS), limiting organic matter solubilization. At 500 μg/kg TSS, RIT decreased CHO and CHON levels in dissolved organic matter by 23.12 % and 56.68 %, respectively, significantly reducing substrate availability to microorganisms. Metagenomic analysis of microbial functional gene sets revealed that RIT had greater inhibitory effects on protein and amino acid metabolism than on carbohydrate metabolism. Under RIT stress, methanogens switched from hydrogenotrophic and acetotrophic methanogenesis to methylotrophic and acetotrophic methanogenesis.

抗病毒药物(ATV)在废弃活性污泥(WAS)中的聚集具有相当大的环境风险,因此了解这些药物在WAS处理过程中的行为至关重要。本研究调查了利托那韦(RIT)(一种用于治疗 2019 年人类免疫缺陷病毒感染和冠状病毒疾病的 ATV)对 WAS 厌氧消化(AD)的影响,以揭示其干扰厌氧菌群的机制。剂量影响结果表明,当 RIT 浓度增加到 1000 μg/kg 总悬浮固体(TSS)时,WAS 厌氧消化的甲烷产量下降了 46.56%。厌氧消化阶段试验表明,RIT 主要刺激微生物合成胞外聚合物(EPS),限制了有机物的溶解。在 500 μg/kg TSS 的条件下,RIT 会使溶解有机物中的 CHO 和 CHON 含量分别降低 23.12 % 和 56.68 %,从而显著降低微生物对底物的利用率。微生物功能基因组分析表明,RIT 对蛋白质和氨基酸代谢的抑制作用大于对碳水化合物代谢的抑制作用。在 RIT 胁迫下,甲烷菌从养氢型和养乙酰型甲烷生成转变为养甲基型和养乙酰型甲烷生成。
{"title":"Mechanistic exploration of COVlD-19 antiviral drug ritonavir on anaerobic digestion through experimental validation coupled with metagenomics analysis.","authors":"Ruming Wang, Zhuoqin Wang, Haiping Yuan, Chunxing Li, Nanwen Zhu","doi":"10.1016/j.jhazmat.2024.135603","DOIUrl":"10.1016/j.jhazmat.2024.135603","url":null,"abstract":"<p><p>Aggregation of antiviral drugs (ATVs) in waste activated sludge (WAS) poses considerable environmental risk, so it is crucial to understand the behavior of these agents during WAS treatment. This study investigated the effects of ritonavir (RIT), an ATV used to treat human immunodeficiency virus infection and coronavirus disease 2019, on anaerobic digestion (AD) of WAS to reveal the mechanisms by which it interferes with anaerobic flora. The dosage influence results showed that methane production in AD of WAS decreased by 46.56 % when RIT concentration was increased to 1000 μg/kg total suspended solids (TSS). The AD staging test revealed that RIT mainly stimulated microbial synthesis of the extracellular polymeric substance (EPS), limiting organic matter solubilization. At 500 μg/kg TSS, RIT decreased CHO and CHON levels in dissolved organic matter by 23.12 % and 56.68 %, respectively, significantly reducing substrate availability to microorganisms. Metagenomic analysis of microbial functional gene sets revealed that RIT had greater inhibitory effects on protein and amino acid metabolism than on carbohydrate metabolism. Under RIT stress, methanogens switched from hydrogenotrophic and acetotrophic methanogenesis to methylotrophic and acetotrophic methanogenesis.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"479 ","pages":"135603"},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the variation mechanism of Zn isotope in polluted farmland soil. 受污染农田土壤中锌同位素的变化机制研究
Pub Date : 2024-11-05 Epub Date: 2024-08-18 DOI: 10.1016/j.jhazmat.2024.135561
Jing Kong, Fang Huang, Rongfei Wei, Xingchao Zhang, Guangxu Zhu, Qingjun Guo

Zn isotope can help to clarify the migration, transformation and source contribution of Zn in farmland soil. However, the research on Zn isotope value of different end members in farmland soil is incomprehensive, and the variation of Zn isotope in farmland soil caused by different factors in different polluted areas is unclear, which hinders the usage of Zn isotope tracing method in farmland soil. Thus, a Pb-Zn mine polluted farmland in southwest China was selected as the research object and the end elements and farmland soil samples with different Zn contamination were systematically collected to analyse Zn content, fraction and isotopic composition. The effects of different end members and processes of eluviation, organic adsorption and inorganic adsorption on Zn isotopic composition in soil were analysed, and the relationship between these three processes and environmental variables was analysed to clarify the change mechanism. The results can enrich the fractionation mechanism of Zn isotopes, expand the application of Zn isotope in tracing the sources, and provide geochemical evidence for remediation of Zn pollution in farmland soil.

锌同位素有助于阐明锌在农田土壤中的迁移、转化和来源贡献。然而,目前对农田土壤中不同最终成分锌同位素值的研究尚不全面,不同污染区不同因素引起的农田土壤中锌同位素的变化尚不清楚,这阻碍了锌同位素示踪方法在农田土壤中的应用。因此,选择中国西南地区铅锌矿污染农田为研究对象,系统采集不同锌污染的最终元素和农田土壤样品,分析锌的含量、组分和同位素组成。分析了土壤中不同末端元素及冲刷、有机吸附和无机吸附过程对锌同位素组成的影响,并分析了这三个过程与环境变量之间的关系,阐明了其变化机理。研究结果丰富了锌同位素的分馏机制,拓展了锌同位素在溯源中的应用,为农田土壤锌污染修复提供了地球化学证据。
{"title":"Study on the variation mechanism of Zn isotope in polluted farmland soil.","authors":"Jing Kong, Fang Huang, Rongfei Wei, Xingchao Zhang, Guangxu Zhu, Qingjun Guo","doi":"10.1016/j.jhazmat.2024.135561","DOIUrl":"10.1016/j.jhazmat.2024.135561","url":null,"abstract":"<p><p>Zn isotope can help to clarify the migration, transformation and source contribution of Zn in farmland soil. However, the research on Zn isotope value of different end members in farmland soil is incomprehensive, and the variation of Zn isotope in farmland soil caused by different factors in different polluted areas is unclear, which hinders the usage of Zn isotope tracing method in farmland soil. Thus, a Pb-Zn mine polluted farmland in southwest China was selected as the research object and the end elements and farmland soil samples with different Zn contamination were systematically collected to analyse Zn content, fraction and isotopic composition. The effects of different end members and processes of eluviation, organic adsorption and inorganic adsorption on Zn isotopic composition in soil were analysed, and the relationship between these three processes and environmental variables was analysed to clarify the change mechanism. The results can enrich the fractionation mechanism of Zn isotopes, expand the application of Zn isotope in tracing the sources, and provide geochemical evidence for remediation of Zn pollution in farmland soil.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"479 ","pages":"135561"},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of hazardous materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1