{"title":"Recursive Prefix-Free Parsing for Building Big BWTs.","authors":"Marco Oliva, Travis Gagie, Christina Boucher","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Prefix-free parsing is useful for a wide variety of purposes including building the BWT, constructing the suffix array, and supporting compressed suffix tree operations. This linear-time algorithm uses a rolling hash to break an input string into substrings, where the resulting set of unique substrings has the property that none of the substrings' suffixes (of more than a certain length) is a proper prefix of any of the other substrings' suffixes. Hence, the name prefix-free parsing. This set of unique substrings is referred to as the <i>dictionary</i>. The <i>parse</i> is the ordered list of dictionary strings that defines the input string. Prior empirical results demonstrated the size of the parse is more burdensome than the size of the dictionary for large, repetitive inputs. Hence, the question arises as to how the size of the parse can scale satisfactorily with the input. Here, we describe our algorithm, <i>recursive prefix-free parsing</i>, which accomplishes this by computing the prefix-free parse of the parse produced by prefix-free parsing an input string. Although conceptually simple, building the BWT from the parse-of-the-parse and the dictionaries is significantly more challenging. We solve and implement this problem. Our experimental results show that recursive prefix-free parsing is extremely effective in reducing the memory needed to build the run-length encoded BWT of the input. Our implementation is open source and available at https://github.com/marco-oliva/r-pfbwt.</p>","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"2023 ","pages":"62-70"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Prefix-free parsing is useful for a wide variety of purposes including building the BWT, constructing the suffix array, and supporting compressed suffix tree operations. This linear-time algorithm uses a rolling hash to break an input string into substrings, where the resulting set of unique substrings has the property that none of the substrings' suffixes (of more than a certain length) is a proper prefix of any of the other substrings' suffixes. Hence, the name prefix-free parsing. This set of unique substrings is referred to as the dictionary. The parse is the ordered list of dictionary strings that defines the input string. Prior empirical results demonstrated the size of the parse is more burdensome than the size of the dictionary for large, repetitive inputs. Hence, the question arises as to how the size of the parse can scale satisfactorily with the input. Here, we describe our algorithm, recursive prefix-free parsing, which accomplishes this by computing the prefix-free parse of the parse produced by prefix-free parsing an input string. Although conceptually simple, building the BWT from the parse-of-the-parse and the dictionaries is significantly more challenging. We solve and implement this problem. Our experimental results show that recursive prefix-free parsing is extremely effective in reducing the memory needed to build the run-length encoded BWT of the input. Our implementation is open source and available at https://github.com/marco-oliva/r-pfbwt.