{"title":"Big portfolio selection by graph-based conditional moments method","authors":"Zhoufan Zhu , Ningning Zhang , Ke Zhu","doi":"10.1016/j.jempfin.2024.101533","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a new <u>gra</u>ph-based <u>c</u>onditional mom<u>e</u>nts (GRACE) method to do portfolio selection based on thousands of stocks or even more. The GRACE method first learns the conditional quantiles and mean of stock returns via a factor-augmented temporal graph convolutional network, which is guided by the set of stock-to-stock relations as well as the set of factor-to-stock relations. Next, the GRACE method learns the conditional variance, skewness, and kurtosis of stock returns from the learned conditional quantiles via the quantiled conditional moment method. Finally, the GRACE method uses the learned conditional mean, variance, skewness, and kurtosis to construct several performance measures, which are criteria to sort the stocks to proceed the portfolio selection in the well-known 10-decile framework. An application to NASDAQ and NYSE stock markets shows that the GRACE method performs much better than its competitors, particularly when the performance measures are comprised of conditional variance, skewness, and kurtosis.</p></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"78 ","pages":"Article 101533"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539824000689","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new graph-based conditional moments (GRACE) method to do portfolio selection based on thousands of stocks or even more. The GRACE method first learns the conditional quantiles and mean of stock returns via a factor-augmented temporal graph convolutional network, which is guided by the set of stock-to-stock relations as well as the set of factor-to-stock relations. Next, the GRACE method learns the conditional variance, skewness, and kurtosis of stock returns from the learned conditional quantiles via the quantiled conditional moment method. Finally, the GRACE method uses the learned conditional mean, variance, skewness, and kurtosis to construct several performance measures, which are criteria to sort the stocks to proceed the portfolio selection in the well-known 10-decile framework. An application to NASDAQ and NYSE stock markets shows that the GRACE method performs much better than its competitors, particularly when the performance measures are comprised of conditional variance, skewness, and kurtosis.
期刊介绍:
The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.