{"title":"Adaptive data quality scoring operations framework using drift-aware mechanism for industrial applications","authors":"Firas Bayram , Bestoun S. Ahmed , Erik Hallin","doi":"10.1016/j.jss.2024.112184","DOIUrl":null,"url":null,"abstract":"<div><p>Within data-driven artificial intelligence (AI) systems for industrial applications, ensuring the reliability of the incoming data streams is an integral part of trustworthy decision-making. An approach to assess data validity is data quality scoring, which assigns a score to each data point or stream based on various quality dimensions. However, certain dimensions exhibit dynamic qualities, which require adaptation on the basis of the system’s current conditions. Existing methods often overlook this aspect, making them inefficient in dynamic production environments. In this paper, we introduce the Adaptive Data Quality Scoring Operations Framework, a novel framework developed to address the challenges posed by dynamic quality dimensions in industrial data streams. The framework introduces an innovative approach by integrating a dynamic change detector mechanism that actively monitors and adapts to changes in data quality, ensuring the relevance of quality scores. We evaluate the proposed framework performance in a real-world industrial use case. The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.</p></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"217 ","pages":"Article 112184"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0164121224002280/pdfft?md5=11e8fc908484f0a491cea864fab6396e&pid=1-s2.0-S0164121224002280-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121224002280","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Within data-driven artificial intelligence (AI) systems for industrial applications, ensuring the reliability of the incoming data streams is an integral part of trustworthy decision-making. An approach to assess data validity is data quality scoring, which assigns a score to each data point or stream based on various quality dimensions. However, certain dimensions exhibit dynamic qualities, which require adaptation on the basis of the system’s current conditions. Existing methods often overlook this aspect, making them inefficient in dynamic production environments. In this paper, we introduce the Adaptive Data Quality Scoring Operations Framework, a novel framework developed to address the challenges posed by dynamic quality dimensions in industrial data streams. The framework introduces an innovative approach by integrating a dynamic change detector mechanism that actively monitors and adapts to changes in data quality, ensuring the relevance of quality scores. We evaluate the proposed framework performance in a real-world industrial use case. The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.