Characterization of switchgrass (Panicum virgatum L.) PvKSL1 as a levopimaradiene/abietadiene-type diterpene synthase.

IF 4.2 3区 生物学 Q1 PLANT SCIENCES Plant Biology Pub Date : 2024-08-20 DOI:10.1111/plb.13708
G Wyatt, P Zerbe, K Tiedge
{"title":"Characterization of switchgrass (Panicum virgatum L.) PvKSL1 as a levopimaradiene/abietadiene-type diterpene synthase.","authors":"G Wyatt, P Zerbe, K Tiedge","doi":"10.1111/plb.13708","DOIUrl":null,"url":null,"abstract":"<p><p>The diverse class of plant diterpenoid metabolites serves important functions in mediating growth, chemical defence, and ecological adaptation. In major monocot crops, such as maize (Zea mays), rice (Oryza sativa), and barley (Hordeum vulgare), diterpenoids function as core components of biotic and abiotic stress resilience. Switchgrass (Panicum virgatum) is a perennial grass valued as a stress-resilient biofuel model crop. Previously we identified an unusually large diterpene synthase family that produces both common and species-specific diterpenoids, several of which accumulate in response to abiotic stress. Here, we report discovery and functional characterization of a previously unrecognized monofunctional class I diterpene synthase (PvKSL1) via in vivo co-expression assays with different copalyl pyrophosphate (CPP) isomers, structural and mutagenesis studies, as well as genomic and transcriptomic analyses. In particular, PvKSL1 converts ent-CPP into ent-abietadiene, ent-palustradiene, ent-levopimaradiene, and ent-neoabietadiene via a 13-hydroxy-8(14)-ent-abietene intermediate. Notably, although featuring a distinct ent-stereochemistry, this product profile is near-identical to bifunctional (+)-levopimaradiene/abietadiene synthases occurring in conifer trees. PvKSL1 has three of four active site residues previously shown to control (+)-levopimaradiene/abietadiene synthase catalytic specificity. However, mutagenesis studies suggest a distinct catalytic mechanism in PvKSL1. Genome localization of PvKSL1 distant from other diterpene synthases, and its phylogenetic distinctiveness from known abietane-forming diterpene synthases, support an independent evolution of PvKSL1 activity. Albeit at low levels, PvKSL1 gene expression predominantly in roots suggests a role of diterpenoid formation in belowground tissue. Together, these findings expand the known chemical and functional space of diterpenoid metabolism in monocot crops.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.13708","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The diverse class of plant diterpenoid metabolites serves important functions in mediating growth, chemical defence, and ecological adaptation. In major monocot crops, such as maize (Zea mays), rice (Oryza sativa), and barley (Hordeum vulgare), diterpenoids function as core components of biotic and abiotic stress resilience. Switchgrass (Panicum virgatum) is a perennial grass valued as a stress-resilient biofuel model crop. Previously we identified an unusually large diterpene synthase family that produces both common and species-specific diterpenoids, several of which accumulate in response to abiotic stress. Here, we report discovery and functional characterization of a previously unrecognized monofunctional class I diterpene synthase (PvKSL1) via in vivo co-expression assays with different copalyl pyrophosphate (CPP) isomers, structural and mutagenesis studies, as well as genomic and transcriptomic analyses. In particular, PvKSL1 converts ent-CPP into ent-abietadiene, ent-palustradiene, ent-levopimaradiene, and ent-neoabietadiene via a 13-hydroxy-8(14)-ent-abietene intermediate. Notably, although featuring a distinct ent-stereochemistry, this product profile is near-identical to bifunctional (+)-levopimaradiene/abietadiene synthases occurring in conifer trees. PvKSL1 has three of four active site residues previously shown to control (+)-levopimaradiene/abietadiene synthase catalytic specificity. However, mutagenesis studies suggest a distinct catalytic mechanism in PvKSL1. Genome localization of PvKSL1 distant from other diterpene synthases, and its phylogenetic distinctiveness from known abietane-forming diterpene synthases, support an independent evolution of PvKSL1 activity. Albeit at low levels, PvKSL1 gene expression predominantly in roots suggests a role of diterpenoid formation in belowground tissue. Together, these findings expand the known chemical and functional space of diterpenoid metabolism in monocot crops.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开关草(Panicum virgatum L.)PvKSL1作为左旋丙二烯/阿维塔二烯型二萜合成酶的特征。
植物二萜代谢物种类繁多,在介导生长、化学防御和生态适应方面具有重要功能。在玉米(Zea mays)、水稻(Oryza sativa)和大麦(Hordeum vulgare)等主要单子叶作物中,二萜是生物和非生物胁迫恢复力的核心成分。开关草(Panicum virgatum)是一种多年生禾本科植物,是一种具有抗逆性的生物燃料示范作物。在此之前,我们发现了一个异常庞大的二萜合成酶家族,该家族既能产生常见的二萜,也能产生物种特异性的二萜,其中有几种二萜会在应对非生物胁迫时积累。在此,我们报告了通过与不同焦磷酸 copalyl(CPP)异构体的体内共表达试验、结构和诱变研究以及基因组和转录组分析,发现了一种以前未认识到的单功能 I 类二萜合成酶(PvKSL1)并对其进行了功能表征。其中,PvKSL1 通过 13-hydroxy-8(14)-ent-abietadiene 中间体将 ent-CPP 转化为 ent-abietadiene、ent-palustradiene、ent-levopimaradiene 和 ent-neoabietadiene。值得注意的是,虽然具有独特的ent-立体化学特征,但这一产物特征与针叶树中出现的双功能(+)-levopimaradiene/ietadiene合成酶几乎相同。PvKSL1 的四个活性位点残基中有三个以前曾被证明控制着 (+)-levopimaradiene/abietadiene 合酶的催化特异性。然而,诱变研究表明 PvKSL1 具有独特的催化机制。PvKSL1 的基因组定位远离其他二萜合成酶,其系统发育也与已知的形成烷烃的二萜合成酶不同,这支持了 PvKSL1 活性的独立进化。尽管水平较低,但 PvKSL1 基因主要在根部表达,这表明二萜类化合物在地下组织中发挥作用。这些发现共同拓展了单子叶作物二萜代谢的已知化学和功能空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biology
Plant Biology 生物-植物科学
CiteScore
8.20
自引率
2.60%
发文量
109
审稿时长
3 months
期刊介绍: Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology. Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.
期刊最新文献
Permeability of postzygotic barriers: embryology of a partially fertile Epidendrum (Orchidaceae) hybrid. Issue Information Modulatory responses of physiological and biochemical status are related to drought tolerance levels in peanut cultivars. Reduced soil moisture drives leaf anatomical shifts more than chronically elevated temperatures in European temperate trees. Salicylic acid priming before cadmium exposure increases wheat growth but does not uniformly reverse cadmium effects on membrane glycerolipids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1