Woo-Jin Shin, Dong-Chan Koh, Bernhard Mayer, Hong-Il Kwon, Ji-Hoon Kim, Kwang-Sik Lee
{"title":"Effect of intensive seasonal pumping and recharge on sulfur biogeochemistry in groundwater of agricultural riparian zones.","authors":"Woo-Jin Shin, Dong-Chan Koh, Bernhard Mayer, Hong-Il Kwon, Ji-Hoon Kim, Kwang-Sik Lee","doi":"10.1016/j.scitotenv.2024.175618","DOIUrl":null,"url":null,"abstract":"<p><p>Physico-chemical characteristics of groundwater are often impacted by agricultural practices such as land use, fertilizer types, and groundwater pumping. This study aimed to identify contaminant sources and redox processes controlling the hydrogeochemistry of groundwater in riparian zones influenced by intensive agricultural activities, focusing on sulfur species. Groundwater samples were collected bimonthly from March 2014 to March 2015 from groundwater wells in two zones in South Korea with different agricultural systems. The water isotopic compositions of the groundwater indicated that all groundwater originated from the same meteoric water. Groundwater samples affected by periodic groundwater pumping exhibited wide variations in Mn<sup>2+</sup> (47.8 ± 18.2 μM) and Fe<sup>2+</sup> (123 ± 61.0 μM) and elevated SO<sub>4</sub><sup>2-</sup>, while NO<sub>3</sub><sup>-</sup> was below the detection limit. Groundwater chemistry was affected by fertilizer and manure, and denitrification. The oxidation of reduced sulfur compounds by oxygen and nitrate did not fully account for the elevated SO<sub>4</sub><sup>2-</sup> concentrations and isotopic composition of sulfate (δ<sup>34</sup>S and δ<sup>18</sup>O) in the investigated aquifers. Therefore, we postulate that water level change due to periodic groundwater pumping and recharge enabled oxidants (MnO<sub>2</sub> and Fe<sup>3+</sup>) to also contribute to oxidation of reduced sulfur. Additionally, fertilizers with distinct δ<sup>34</sup>S values and bacterial sulfate reduction (BSR) affected groundwater chemistry and its sulfur species, including δ<sup>34</sup>S<sub>SO4</sub> and δ<sup>18</sup>O<sub>SO4</sub>. Removal of sulfate from the aquifer during pumping limited BSR. Consequently, the agricultural practices may further increase sulfate concentrations in the groundwater. This environmental impact should be thoroughly managed because high sulfate concentrations in drinking water cause ingestion problems in humans.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175618","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Physico-chemical characteristics of groundwater are often impacted by agricultural practices such as land use, fertilizer types, and groundwater pumping. This study aimed to identify contaminant sources and redox processes controlling the hydrogeochemistry of groundwater in riparian zones influenced by intensive agricultural activities, focusing on sulfur species. Groundwater samples were collected bimonthly from March 2014 to March 2015 from groundwater wells in two zones in South Korea with different agricultural systems. The water isotopic compositions of the groundwater indicated that all groundwater originated from the same meteoric water. Groundwater samples affected by periodic groundwater pumping exhibited wide variations in Mn2+ (47.8 ± 18.2 μM) and Fe2+ (123 ± 61.0 μM) and elevated SO42-, while NO3- was below the detection limit. Groundwater chemistry was affected by fertilizer and manure, and denitrification. The oxidation of reduced sulfur compounds by oxygen and nitrate did not fully account for the elevated SO42- concentrations and isotopic composition of sulfate (δ34S and δ18O) in the investigated aquifers. Therefore, we postulate that water level change due to periodic groundwater pumping and recharge enabled oxidants (MnO2 and Fe3+) to also contribute to oxidation of reduced sulfur. Additionally, fertilizers with distinct δ34S values and bacterial sulfate reduction (BSR) affected groundwater chemistry and its sulfur species, including δ34SSO4 and δ18OSO4. Removal of sulfate from the aquifer during pumping limited BSR. Consequently, the agricultural practices may further increase sulfate concentrations in the groundwater. This environmental impact should be thoroughly managed because high sulfate concentrations in drinking water cause ingestion problems in humans.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture