Henry T P Annecke, Reiner Eidelpes, Hannes Feyrer, Julian Ilgen, Cenk Onur Gürdap, Rubin Dasgupta, Katja Petzold
{"title":"Optimising in-cell NMR acquisition for nucleic acids.","authors":"Henry T P Annecke, Reiner Eidelpes, Hannes Feyrer, Julian Ilgen, Cenk Onur Gürdap, Rubin Dasgupta, Katja Petzold","doi":"10.1007/s10858-024-00448-5","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the structure and function of nucleic acids in their native environment is crucial to structural biology and one focus of in-cell NMR spectroscopy. Many challenges hamper in-cell NMR in human cell lines, e.g. sample decay through cell death and RNA degradation. The resulting low signal intensities and broad line widths limit the use of more complex NMR experiments, reducing the possible structural and dynamic information that can be extracted. Here, we optimize the detection of imino proton signals, indicators of base-pairing and therefore secondary structure, of a double-stranded DNA oligonucleotide in HeLa cells, using selective excitation. We demonstrate the reproducible quantification of in-cell selective longitudinal relaxation times (selT<sub>1</sub>), which are reduced compared to the in vitro environment, as a result of interactions with the complex cellular environment. By measuring the intracellular selT<sub>1,</sub> we optimize the existing proton pulse sequences, and shorten measurement time whilst enhancing the signal gained per unit of time. This exemplifies an advantage of selective excitation over conventional methods like jump-return water suppression for in-cell NMR. Furthermore, important experimental controls are discussed, including intracellular quantification, supernatant control measurements, as well as the processing of lowly concentrated in-cell NMR samples. We expect that robust and fast in-cell NMR experiments of nucleic acids will facilitate the study of structure and dynamics and reveal their functional correlation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-024-00448-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the structure and function of nucleic acids in their native environment is crucial to structural biology and one focus of in-cell NMR spectroscopy. Many challenges hamper in-cell NMR in human cell lines, e.g. sample decay through cell death and RNA degradation. The resulting low signal intensities and broad line widths limit the use of more complex NMR experiments, reducing the possible structural and dynamic information that can be extracted. Here, we optimize the detection of imino proton signals, indicators of base-pairing and therefore secondary structure, of a double-stranded DNA oligonucleotide in HeLa cells, using selective excitation. We demonstrate the reproducible quantification of in-cell selective longitudinal relaxation times (selT1), which are reduced compared to the in vitro environment, as a result of interactions with the complex cellular environment. By measuring the intracellular selT1, we optimize the existing proton pulse sequences, and shorten measurement time whilst enhancing the signal gained per unit of time. This exemplifies an advantage of selective excitation over conventional methods like jump-return water suppression for in-cell NMR. Furthermore, important experimental controls are discussed, including intracellular quantification, supernatant control measurements, as well as the processing of lowly concentrated in-cell NMR samples. We expect that robust and fast in-cell NMR experiments of nucleic acids will facilitate the study of structure and dynamics and reveal their functional correlation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.