Entry of nanoparticles into cells and tissues: status and challenges.

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Beilstein Journal of Nanotechnology Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI:10.3762/bjnano.15.83
Kirsten Sandvig, Tore Geir Iversen, Tore Skotland
{"title":"Entry of nanoparticles into cells and tissues: status and challenges.","authors":"Kirsten Sandvig, Tore Geir Iversen, Tore Skotland","doi":"10.3762/bjnano.15.83","DOIUrl":null,"url":null,"abstract":"<p><p>In this article we discuss how nanoparticles (NPs) of different compositions may interact with and be internalized by cells, and the consequences of that for cellular functions. A large number of NPs are made with the intention to improve cancer treatment, the goal being to increase the fraction of injected drug delivered to the tumor and thereby improve the therapeutic effect and decrease side effects. Thus, we discuss how NPs are delivered to tumors and some challenges related to investigations of biodistribution, pharmacokinetics, and excretion. Finally, we discuss requirements for bringing NPs into clinical use and aspects when it comes to usage of complex and slowly degraded or nondegradable NPs.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.83","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we discuss how nanoparticles (NPs) of different compositions may interact with and be internalized by cells, and the consequences of that for cellular functions. A large number of NPs are made with the intention to improve cancer treatment, the goal being to increase the fraction of injected drug delivered to the tumor and thereby improve the therapeutic effect and decrease side effects. Thus, we discuss how NPs are delivered to tumors and some challenges related to investigations of biodistribution, pharmacokinetics, and excretion. Finally, we discuss requirements for bringing NPs into clinical use and aspects when it comes to usage of complex and slowly degraded or nondegradable NPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米颗粒进入细胞和组织:现状与挑战。
本文将讨论不同成分的纳米粒子(NPs)如何与细胞相互作用并被细胞内化,以及由此对细胞功能产生的影响。制造大量 NPs 的目的是为了改善癌症治疗,其目标是增加注射到肿瘤的药物比例,从而提高治疗效果并减少副作用。因此,我们将讨论如何将 NPs 运送到肿瘤,以及与生物分布、药代动力学和排泄研究相关的一些挑战。最后,我们讨论了将 NPs 应用于临床的要求,以及使用复杂、降解缓慢或不可降解的 NPs 所涉及的各个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
期刊最新文献
New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures. Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae). The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films. Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids. Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1