Gallic acid as biofilm inhibitor can improve transformation efficiency of Ruminiclostridium papyrosolvens.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology Letters Pub Date : 2024-12-01 Epub Date: 2024-08-20 DOI:10.1007/s10529-024-03522-y
Duodong Wang, Na Liu, Mingqiang Qiao, Chenggang Xu
{"title":"Gallic acid as biofilm inhibitor can improve transformation efficiency of Ruminiclostridium papyrosolvens.","authors":"Duodong Wang, Na Liu, Mingqiang Qiao, Chenggang Xu","doi":"10.1007/s10529-024-03522-y","DOIUrl":null,"url":null,"abstract":"<p><p>Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its genetic transformation has been severely impeded by extracellular biofilm. Here, we analyzed the effects of five different inhibitors with gradient concentrations on R. papyrosolvens growth and biofilm formation. Gallic acid was proved to be a potent inhibitor of biofilm synthesis of R. papyrosolvens. Furthermore, the transformation efficiency of R. papyrosolvens was significantly increased when the cells were treated by the gallic acid, and the mutant strain was successfully obtained by the improved transformation method. Thus, inhibition of biofilm formation of R. papyrosolvens by using gallic acid will contribute to its genetic transformation and efficient metabolic engineering.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"1143-1153"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03522-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its genetic transformation has been severely impeded by extracellular biofilm. Here, we analyzed the effects of five different inhibitors with gradient concentrations on R. papyrosolvens growth and biofilm formation. Gallic acid was proved to be a potent inhibitor of biofilm synthesis of R. papyrosolvens. Furthermore, the transformation efficiency of R. papyrosolvens was significantly increased when the cells were treated by the gallic acid, and the mutant strain was successfully obtained by the improved transformation method. Thus, inhibition of biofilm formation of R. papyrosolvens by using gallic acid will contribute to its genetic transformation and efficient metabolic engineering.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
没食子酸作为生物膜抑制剂可提高瘤胃梭菌的转化效率。
纸浆梭状芽孢杆菌(Ruminiclostridium papyrosolvens)是一种厌氧、嗜中性、溶解纤维素的梭状芽孢杆菌,是利用纤维素生产可再生绿色化学品的有希望的综合生物加工(CBP)候选菌,但其遗传转化受到细胞外生物膜的严重阻碍。在此,我们分析了五种不同浓度梯度的抑制剂对纸莎草菌生长和生物膜形成的影响。结果表明,没食子酸是一种强效的纸莎草夜蛾生物膜合成抑制剂。此外,用没食子酸处理细胞后,R. papyrosolvens 的转化效率显著提高,并通过改进的转化方法成功获得了突变株。因此,利用没食子酸抑制R. papyrosolvens的生物膜形成将有助于其基因转化和高效代谢工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
期刊最新文献
High-yield magnetosome production of Magnetospirillum magneticum strain AMB-1 in flask fermentation through simplified processing and optimized iron supplementation. A key component Rxt3 in the Rpd3L histone deacetylase complex regulates development, stress tolerance, amylase production and kojic acid synthesis in Aspergillus oryzae. Efficient genome engineering in Mycolicibacterium neoaurum using Cas9 from Streptococcus thermophilus. Multiple genes deletion based on Cre-loxP marker-less gene deletion system for the strains from the genus of Pectobacterium. Toxicants improve glycerol production in the fermentation of undetoxified hydrolysate by Candida glycerinogenes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1