AirLift: A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes.

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS IEEE/ACM Transactions on Computational Biology and Bioinformatics Pub Date : 2024-08-19 DOI:10.1109/TCBB.2024.3433378
Jeremie S Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can Alkan, Onur Mutlu
{"title":"AirLift: A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes.","authors":"Jeremie S Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can Alkan, Onur Mutlu","doi":"10.1109/TCBB.2024.3433378","DOIUrl":null,"url":null,"abstract":"<p><p>AirLift is the first read remapping tool that enables users to quickly and comprehensively map a read set, that had been previously mapped to one reference genome, to another similar reference. Users can then quickly run a downstream analysis of read sets for each latest reference release. Compared to the state-of-the-art method for remapping reads (i.e., full mapping), AirLift reduces the overall execution time to remap read sets between two reference genome versions by up to 27.4×. We validate our remapping results with GATK and find that AirLift provides high accuracy in identifying ground truth SNP/INDEL variants.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3433378","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

AirLift is the first read remapping tool that enables users to quickly and comprehensively map a read set, that had been previously mapped to one reference genome, to another similar reference. Users can then quickly run a downstream analysis of read sets for each latest reference release. Compared to the state-of-the-art method for remapping reads (i.e., full mapping), AirLift reduces the overall execution time to remap read sets between two reference genome versions by up to 27.4×. We validate our remapping results with GATK and find that AirLift provides high accuracy in identifying ground truth SNP/INDEL variants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AirLift:快速、全面的参考基因组间重配技术。
AirLift 是第一款读数重映射工具,用户可以将以前映射到一个参考基因组的读数集快速、全面地映射到另一个类似的参考基因组。然后,用户可以针对每个最新发布的参考文献快速运行读数集下游分析。与最先进的读数重映射方法(即完全映射)相比,AirLift 将两个参考基因组版本之间的读数集重映射的总体执行时间缩短了 27.4 倍。我们用 GATK 验证了我们的重映射结果,发现 AirLift 在识别地面实况 SNP/INDEL 变异方面具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
期刊最新文献
iAnOxPep: a machine learning model for the identification of anti-oxidative peptides using ensemble learning. DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model. Performance Comparison between Deep Neural Network and Machine Learning based Classifiers for Huntington Disease Prediction from Human DNA Sequence. AI-based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey. Enhancing Single-Cell RNA-seq Data Completeness with a Graph Learning Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1