David Koller, Kevin M. Kocot, Bernard M. Degnan, Tim Wollesen
{"title":"Developmental gene expression in the eyes of the pygmy squid Xipholeptos notoides","authors":"David Koller, Kevin M. Kocot, Bernard M. Degnan, Tim Wollesen","doi":"10.1002/jez.b.23270","DOIUrl":null,"url":null,"abstract":"<p>The eyes of squids, octopuses, and cuttlefish are a textbook example for evolutionary convergence, due to their striking similarity to those of vertebrates. For this reason, studies on cephalopod photoreception and vision are of importance for a broader audience. Previous studies showed that genes such as <i>pax6</i>, or certain opsin-encoding genes, are evolutionarily highly conserved and play similar roles during ontogenesis in remotely related bilaterians. In this study, genes that encode photosensitive proteins and Reflectins are identified and characterized. The expression patterns of <i>rhodopsin</i>, <i>xenopsin</i>, <i>retinochrome</i>, and two <i>reflectin</i> genes have been visualized in developing embryos of the pygmy squid <i>Xipholeptos notoides</i> by in situ hybridization experiments. <i>Rhodopsin</i> is not only expressed in the retina of <i>X. notoides</i> but also in the olfactory organ and the dorsal parolfactory vesicles, the latter a cephalopod apomorphy. Both <i>reflectin</i> genes are expressed in the eyes and in the olfactory organ. These findings corroborate previous studies that found <i>opsin</i> genes in the transcriptomes of the eyes and several extraocular tissues of various cephalopods. Expression of <i>rhodopsin</i>, <i>xenopsin</i>, <i>retinochrome</i>, and the two <i>reflectin</i> genes in the olfactory organ is a finding that has not been described so far. In other organisms, it has been shown that Retinochrome and Rhodopsin proteins are obligatorily associated with each other as both molecules rely on each other for Retinal isomerisation. In addition, we demonstrate that <i>retinochrome</i> is expressed in the retina of <i>X. notoides</i> and in the olfactory organ. This study shows numerous new expression patterns for Opsin-encoding genes in organs that have not been associated with photoreception before, suggesting that either Opsins may not only be involved in photoreception or organs such as the olfactory organ are involved in photoreception.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 7","pages":"483-498"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23270","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23270","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The eyes of squids, octopuses, and cuttlefish are a textbook example for evolutionary convergence, due to their striking similarity to those of vertebrates. For this reason, studies on cephalopod photoreception and vision are of importance for a broader audience. Previous studies showed that genes such as pax6, or certain opsin-encoding genes, are evolutionarily highly conserved and play similar roles during ontogenesis in remotely related bilaterians. In this study, genes that encode photosensitive proteins and Reflectins are identified and characterized. The expression patterns of rhodopsin, xenopsin, retinochrome, and two reflectin genes have been visualized in developing embryos of the pygmy squid Xipholeptos notoides by in situ hybridization experiments. Rhodopsin is not only expressed in the retina of X. notoides but also in the olfactory organ and the dorsal parolfactory vesicles, the latter a cephalopod apomorphy. Both reflectin genes are expressed in the eyes and in the olfactory organ. These findings corroborate previous studies that found opsin genes in the transcriptomes of the eyes and several extraocular tissues of various cephalopods. Expression of rhodopsin, xenopsin, retinochrome, and the two reflectin genes in the olfactory organ is a finding that has not been described so far. In other organisms, it has been shown that Retinochrome and Rhodopsin proteins are obligatorily associated with each other as both molecules rely on each other for Retinal isomerisation. In addition, we demonstrate that retinochrome is expressed in the retina of X. notoides and in the olfactory organ. This study shows numerous new expression patterns for Opsin-encoding genes in organs that have not been associated with photoreception before, suggesting that either Opsins may not only be involved in photoreception or organs such as the olfactory organ are involved in photoreception.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.