Mitochondrial DNA Genomes Reveal Relaxed Purifying Selection During Human Population Expansion after the Last Glacial Maximum.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular biology and evolution Pub Date : 2024-09-04 DOI:10.1093/molbev/msae175
Hong-Xiang Zheng, Shi Yan, Menghan Zhang, Zhenglong Gu, Jiucun Wang, Li Jin
{"title":"Mitochondrial DNA Genomes Reveal Relaxed Purifying Selection During Human Population Expansion after the Last Glacial Maximum.","authors":"Hong-Xiang Zheng, Shi Yan, Menghan Zhang, Zhenglong Gu, Jiucun Wang, Li Jin","doi":"10.1093/molbev/msae175","DOIUrl":null,"url":null,"abstract":"<p><p>Modern humans have experienced explosive population growth in the past thousand years. We hypothesized that recent human populations have inhabited environments with relaxation of selective constraints, possibly due to the more abundant food supply after the Last Glacial Maximum. The ratio of nonsynonymous to synonymous mutations (N/S ratio) is a useful and common statistic for measuring selective constraints. In this study, we reconstructed a high-resolution phylogenetic tree using a total of 26,419 East Eurasian mitochondrial DNA genomes, which were further classified into expansion and nonexpansion groups on the basis of the frequencies of their founder lineages. We observed a much higher N/S ratio in the expansion group, especially for nonsynonymous mutations with moderately deleterious effects, indicating a weaker effect of purifying selection in the expanded clades. However, this observation on N/S ratio was unlikely in computer simulations where all individuals were under the same selective constraints. Thus, we argue that the expanded populations were subjected to weaker selective constraints than the nonexpanded populations were. The mildly deleterious mutations were retained during population expansion, which could have a profound impact on present-day disease patterns.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae175","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Modern humans have experienced explosive population growth in the past thousand years. We hypothesized that recent human populations have inhabited environments with relaxation of selective constraints, possibly due to the more abundant food supply after the Last Glacial Maximum. The ratio of nonsynonymous to synonymous mutations (N/S ratio) is a useful and common statistic for measuring selective constraints. In this study, we reconstructed a high-resolution phylogenetic tree using a total of 26,419 East Eurasian mitochondrial DNA genomes, which were further classified into expansion and nonexpansion groups on the basis of the frequencies of their founder lineages. We observed a much higher N/S ratio in the expansion group, especially for nonsynonymous mutations with moderately deleterious effects, indicating a weaker effect of purifying selection in the expanded clades. However, this observation on N/S ratio was unlikely in computer simulations where all individuals were under the same selective constraints. Thus, we argue that the expanded populations were subjected to weaker selective constraints than the nonexpanded populations were. The mildly deleterious mutations were retained during population expansion, which could have a profound impact on present-day disease patterns.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MtDNA 基因组揭示了末次冰川极盛期后人类种群扩张过程中宽松的净化选择。
现代人类在过去一千年中经历了爆炸性的人口增长。我们推测,可能是由于末次冰川极盛期之后食物供应更加充足,最近的人类居住在选择性约束放松的环境中。非同义突变与同义突变之比(N/S 比)是衡量选择性约束的一个有用且常见的统计指标。在这项研究中,我们利用总共 26 419 个东欧亚 mtDNA 基因组重建了一棵高分辨率的系统发生树,并根据其创始系的频率将其进一步划分为扩张组和非扩张组。我们观察到扩增组的 N/S 比值要高得多,尤其是具有中度有害效应的非同义突变,这表明在扩增的支系中净化选择的效应较弱。然而,在所有个体都处于相同选择限制条件下的计算机模拟中,N/S 比值不太可能出现这种情况。因此,我们认为,扩大的种群比未扩大的种群受到的选择限制更弱。在种群扩张过程中,轻度有害突变被保留了下来,这可能会对当今的疾病模式产生深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
期刊最新文献
Remarkable evolutionary rate variations among lineages and among genome compartments in malaria parasites of mammals. Digital image processing to detect adaptive evolution. Accurate Inference of the Polyploid Continuum using Forward-time Simulations. Comparative genomics provides insights into adaptive evolution and demographics of bats. Convergent degenerated regulatory elements associated with limb loss in limbless amphibians and reptiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1