Elizabeth Lieschke, Annabella F Thomas, Andrew Kueh, Georgia K Atkin-Smith, Pedro L Baldoni, John E La Marca, Savannah Young, Allan Shuai Huang, Aisling M Ross, Lauren Whelan, Deeksha Kaloni, Lin Tai, Gordon K Smyth, Marco J Herold, Edwin D Hawkins, Andreas Strasser, Gemma L Kelly
{"title":"Mouse models to investigate in situ cell fate decisions induced by p53.","authors":"Elizabeth Lieschke, Annabella F Thomas, Andrew Kueh, Georgia K Atkin-Smith, Pedro L Baldoni, John E La Marca, Savannah Young, Allan Shuai Huang, Aisling M Ross, Lauren Whelan, Deeksha Kaloni, Lin Tai, Gordon K Smyth, Marco J Herold, Edwin D Hawkins, Andreas Strasser, Gemma L Kelly","doi":"10.1038/s44318-024-00189-z","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating how transcription factors control complex cellular processes requires tools that enable responses to be visualised at the single-cell level and their cell fate to be followed over time. For example, the tumour suppressor p53 (also called TP53 in humans and TRP53 in mice) can initiate diverse cellular responses by transcriptional activation of its target genes: Puma to induce apoptotic cell death and p21 to induce cell cycle arrest/cell senescence. However, it is not known how these processes are regulated and initiated in different cell types. Also, the context-dependent interaction partners and binding loci of p53 remain largely elusive. To be able to examine these questions, we here developed knock-in mice expressing triple-FLAG-tagged p53 to facilitate p53 pull-down and two p53 response reporter mice, knocking tdTomato and GFP into the Puma/Bbc3 and p21 gene loci, respectively. By crossing these reporter mice into a p53-deficient background, we show that the new reporters reliably inform on p53-dependent and p53-independent initiation of both apoptotic or cell cycle arrest/senescence programs, respectively, in vitro and in vivo.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00189-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating how transcription factors control complex cellular processes requires tools that enable responses to be visualised at the single-cell level and their cell fate to be followed over time. For example, the tumour suppressor p53 (also called TP53 in humans and TRP53 in mice) can initiate diverse cellular responses by transcriptional activation of its target genes: Puma to induce apoptotic cell death and p21 to induce cell cycle arrest/cell senescence. However, it is not known how these processes are regulated and initiated in different cell types. Also, the context-dependent interaction partners and binding loci of p53 remain largely elusive. To be able to examine these questions, we here developed knock-in mice expressing triple-FLAG-tagged p53 to facilitate p53 pull-down and two p53 response reporter mice, knocking tdTomato and GFP into the Puma/Bbc3 and p21 gene loci, respectively. By crossing these reporter mice into a p53-deficient background, we show that the new reporters reliably inform on p53-dependent and p53-independent initiation of both apoptotic or cell cycle arrest/senescence programs, respectively, in vitro and in vivo.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.