Bridging MRI Cross-Modality Synthesis and Multi-Contrast Super-Resolution by Fine-Grained Difference Learning.

Yidan Feng, Sen Deng, Jun Lyu, Jing Cai, Mingqiang Wei, Jing Qin
{"title":"Bridging MRI Cross-Modality Synthesis and Multi-Contrast Super-Resolution by Fine-Grained Difference Learning.","authors":"Yidan Feng, Sen Deng, Jun Lyu, Jing Cai, Mingqiang Wei, Jing Qin","doi":"10.1109/TMI.2024.3445969","DOIUrl":null,"url":null,"abstract":"<p><p>In multi-modal magnetic resonance imaging (MRI), the tasks of imputing or reconstructing the target modality share a common obstacle: the accurate modeling of fine-grained inter-modal differences, which has been sparingly addressed in current literature. These differences stem from two sources: 1) spatial misalignment remaining after coarse registration and 2) structural distinction arising from modality-specific signal manifestations. This paper integrates the previously separate research trajectories of cross-modality synthesis (CMS) and multi-contrast super-resolution (MCSR) to address this pervasive challenge within a unified framework. Connected through generalized down-sampling ratios, this unification not only emphasizes their common goal in reducing structural differences, but also identifies the key task distinguishing MCSR from CMS: modeling the structural distinctions using the limited information from the misaligned target input. Specifically, we propose a composite network architecture with several key components: a label correction module to align the coordinates of multi-modal training pairs, a CMS module serving as the base model, an SR branch to handle target inputs, and a difference projection discriminator for structural distinction-centered adversarial training. When training the SR branch as the generator, the adversarial learning is enhanced with distinction-aware incremental modulation to ensure better-controlled generation. Moreover, the SR branch integrates deformable convolutions to address cross-modal spatial misalignment at the feature level. Experiments conducted on three public datasets demonstrate that our approach effectively balances structural accuracy and realism, exhibiting overall superiority in comprehensive evaluations for both tasks over current state-of-the-art approaches. The code is available at https://github.com/papshare/FGDL.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3445969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In multi-modal magnetic resonance imaging (MRI), the tasks of imputing or reconstructing the target modality share a common obstacle: the accurate modeling of fine-grained inter-modal differences, which has been sparingly addressed in current literature. These differences stem from two sources: 1) spatial misalignment remaining after coarse registration and 2) structural distinction arising from modality-specific signal manifestations. This paper integrates the previously separate research trajectories of cross-modality synthesis (CMS) and multi-contrast super-resolution (MCSR) to address this pervasive challenge within a unified framework. Connected through generalized down-sampling ratios, this unification not only emphasizes their common goal in reducing structural differences, but also identifies the key task distinguishing MCSR from CMS: modeling the structural distinctions using the limited information from the misaligned target input. Specifically, we propose a composite network architecture with several key components: a label correction module to align the coordinates of multi-modal training pairs, a CMS module serving as the base model, an SR branch to handle target inputs, and a difference projection discriminator for structural distinction-centered adversarial training. When training the SR branch as the generator, the adversarial learning is enhanced with distinction-aware incremental modulation to ensure better-controlled generation. Moreover, the SR branch integrates deformable convolutions to address cross-modal spatial misalignment at the feature level. Experiments conducted on three public datasets demonstrate that our approach effectively balances structural accuracy and realism, exhibiting overall superiority in comprehensive evaluations for both tasks over current state-of-the-art approaches. The code is available at https://github.com/papshare/FGDL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过细粒度差分学习架起核磁共振成像跨模态合成与多对比超分辨率的桥梁
在多模态磁共振成像(MRI)中,归因或重建目标模态的任务有一个共同的障碍:对细粒度模态间差异进行精确建模,而目前的文献很少涉及这一问题。这些差异有两个来源:1) 粗配准后残留的空间错位;2) 由特定模态信号表现产生的结构差异。本文整合了跨模态合成(CMS)和多对比度超分辨率(MCSR)这两个以往独立的研究方向,在一个统一的框架内解决了这一普遍存在的难题。通过广义下采样率的连接,这种统一不仅强调了它们在减少结构差异方面的共同目标,还确定了 MCSR 区别于 CMS 的关键任务:利用来自错位目标输入的有限信息对结构差异进行建模。具体来说,我们提出了一种包含几个关键组件的复合网络架构:用于对齐多模态训练对坐标的标签校正模块、作为基础模型的 CMS 模块、处理目标输入的 SR 分支,以及用于以结构差异为中心的对抗训练的差异投影判别器。在将 SR 分支作为生成器进行训练时,对抗学习会通过区分感知增量调制得到增强,以确保生成器得到更好的控制。此外,SR 分支还整合了可变形卷积,以解决特征层面的跨模态空间错位问题。在三个公共数据集上进行的实验表明,我们的方法有效地平衡了结构准确性和真实性,在这两项任务的综合评估中,我们的方法总体上优于目前最先进的方法。代码见 https://github.com/papshare/FGDL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1