Positivity Preserving and Mass Conservative Projection Method for the Poisson–Nernst–Planck Equation

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Numerical Analysis Pub Date : 2024-08-20 DOI:10.1137/23m1581649
Fenghua Tong, Yongyong Cai
{"title":"Positivity Preserving and Mass Conservative Projection Method for the Poisson–Nernst–Planck Equation","authors":"Fenghua Tong, Yongyong Cai","doi":"10.1137/23m1581649","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2004-2024, August 2024. <br/> Abstract. We propose and analyze a novel approach to construct structure preserving approximations for the Poisson–Nernst–Planck equations, focusing on the positivity preserving and mass conservation properties. The strategy consists of a standard time marching step with a projection (or correction) step to satisfy the desired physical constraints (positivity and mass conservation). Based on the [math] projection, we construct a second order Crank–Nicolson type finite difference scheme, which is linear (exclude the very efficient [math] projection part), positivity preserving, and mass conserving. Rigorous error estimates in the [math] norm are established, which are both second order accurate in space and time. The other choice of projection, e.g., [math] projection, is discussed. Numerical examples are presented to verify the theoretical results and demonstrate the efficiency of the proposed method.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"29 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1581649","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 2004-2024, August 2024.
Abstract. We propose and analyze a novel approach to construct structure preserving approximations for the Poisson–Nernst–Planck equations, focusing on the positivity preserving and mass conservation properties. The strategy consists of a standard time marching step with a projection (or correction) step to satisfy the desired physical constraints (positivity and mass conservation). Based on the [math] projection, we construct a second order Crank–Nicolson type finite difference scheme, which is linear (exclude the very efficient [math] projection part), positivity preserving, and mass conserving. Rigorous error estimates in the [math] norm are established, which are both second order accurate in space and time. The other choice of projection, e.g., [math] projection, is discussed. Numerical examples are presented to verify the theoretical results and demonstrate the efficiency of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泊松-纳斯特-普朗克方程的正性保持和质量守恒投影法
SIAM 数值分析期刊》,第 62 卷第 4 期,第 2004-2024 页,2024 年 8 月。 摘要。我们提出并分析了一种构建泊松-纳斯特-普朗克方程结构保持近似的新方法,重点是正性保持和质量守恒特性。该策略包括一个标准的时间行进步骤和一个投影(或修正)步骤,以满足所需的物理约束(实在性和质量守恒)。基于[math]投影,我们构建了一个二阶 Crank-Nicolson 型有限差分方案,它是线性的(不包括非常高效的[math]投影部分),具有正性保持和质量守恒特性。在 [math] 规范下建立了严格的误差估计,在空间和时间上都是二阶精确的。还讨论了投影的其他选择,如[math]投影。还给出了数值示例来验证理论结果,并展示了所提方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
期刊最新文献
On the Existence of Minimizers in Shallow Residual ReLU Neural Network Optimization Landscapes A Domain Decomposition Method for Stochastic Evolution Equations New Time Domain Decomposition Methods for Parabolic Optimal Control Problems II: Neumann–Neumann Algorithms The Mean-Field Ensemble Kalman Filter: Near-Gaussian Setting The Lanczos Tau Framework for Time-Delay Systems: Padé Approximation and Collocation Revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1