Round Robin Study for Evaluation an in vitro skin irritation test for medical device extracts using KeraSkinTM in Korea

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY Food and Chemical Toxicology Pub Date : 2024-08-18 DOI:10.1016/j.fct.2024.114942
{"title":"Round Robin Study for Evaluation an in vitro skin irritation test for medical device extracts using KeraSkinTM in Korea","authors":"","doi":"10.1016/j.fct.2024.114942","DOIUrl":null,"url":null,"abstract":"<div><p>With the growing importance of alternative test methods that implement the 3Rs principles (Reduction, Refinement and Replacement) and the global importance of biological safety assessment data for medical devices is increasing. We have developed and optimized the ‘KeraSkin™ Skin Irritation Test (KeraSkin™ SIT) for medical device’ for regulatory application in biological evaluation according to ISO 10993-23. We conducted a round robin study to optimize and evaluate the performance of KeraSkin™ SIT for medical devices using KeraSkin™ Reconstructed Human Epidermis (RhE), which is developed and manufactured in Korea. This round robin study was performed to assess the transferability, reproducibility (within and between laboratories) and predictive capacity in 1 lead laboratory and 3 participating laboratories based on OECD Guidance Document 34. The predictive capacity, the results showed 83.3 % of sensitivity, 100 % of specificity and 91.6 % of accuracy. In conclusion, the results demonstrate that ‘KeraSkin™ SIT for medical device’ provides a robust test method for detecting irritant activity of medical device extracts and can be utilized for identifying low levels of potent irritants in medical device extracts. Therefore, it fulfills the requirements to be included as a ‘me-too’ test method to EpiDerm™ and SkinEthic™ skin irritation test in ISO 10993-23.</p></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691524005088","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing importance of alternative test methods that implement the 3Rs principles (Reduction, Refinement and Replacement) and the global importance of biological safety assessment data for medical devices is increasing. We have developed and optimized the ‘KeraSkin™ Skin Irritation Test (KeraSkin™ SIT) for medical device’ for regulatory application in biological evaluation according to ISO 10993-23. We conducted a round robin study to optimize and evaluate the performance of KeraSkin™ SIT for medical devices using KeraSkin™ Reconstructed Human Epidermis (RhE), which is developed and manufactured in Korea. This round robin study was performed to assess the transferability, reproducibility (within and between laboratories) and predictive capacity in 1 lead laboratory and 3 participating laboratories based on OECD Guidance Document 34. The predictive capacity, the results showed 83.3 % of sensitivity, 100 % of specificity and 91.6 % of accuracy. In conclusion, the results demonstrate that ‘KeraSkin™ SIT for medical device’ provides a robust test method for detecting irritant activity of medical device extracts and can be utilized for identifying low levels of potent irritants in medical device extracts. Therefore, it fulfills the requirements to be included as a ‘me-too’ test method to EpiDerm™ and SkinEthic™ skin irritation test in ISO 10993-23.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
韩国将 KeraSkin™ 作为医疗器械提取物体外皮肤刺激性测试的循环研究。
随着实施 3R 原则(减少、改进和替代)的替代测试方法的重要性日益增加,全球对医疗器械生物安全性评估数据的重视程度也在不断提高。我们开发并优化了 "用于医疗器械的 KeraSkin™ 皮肤刺激测试(KeraSkin™ SIT)",以根据 ISO 10993-23 标准应用于生物评估的监管。我们开展了一项循环研究,使用韩国开发和制造的 KeraSkin™ 重建人表皮(RhE)来优化和评估用于医疗器械的 KeraSkin™ SIT 的性能。这项循环研究以 OECD 第 34 号指导文件为基础,对 1 个牵头实验室和 3 个参与实验室的可转移性、可重复性(实验室内部和实验室之间)和预测能力进行了评估。在预测能力方面,结果显示灵敏度为 83.3%,特异度为 100%,准确度为 91.6%。总之,结果表明 "用于医疗器械的 KeraSkin™ SIT "为检测医疗器械提取物的刺激性活性提供了一种可靠的测试方法,可用于鉴定医疗器械提取物中低水平的强刺激性物质。因此,它满足了 ISO 10993-23 中作为 EpiDerm™ 和 SkinEthic™ 皮肤刺激性测试的 "同类 "测试方法的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Chemical Toxicology
Food and Chemical Toxicology 工程技术-毒理学
CiteScore
10.90
自引率
4.70%
发文量
651
审稿时长
31 days
期刊介绍: Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs. The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following: -Adverse physiological/biochemical, or pathological changes induced by specific defined substances -New techniques for assessing potential toxicity, including molecular biology -Mechanisms underlying toxic phenomena -Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability. Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.
期刊最新文献
Update to RIFM fragrance ingredient safety assessment, octyl formate, CAS registry number 112-32-3 Pumpkin seed oil lessens the colchicine-induced altered sex male hormone balance, testicular oxidative status, sperm abnormalities, and collagen deposition in male rats via Caspase3/ Desmin/ PCNA modulation. Lactoferrin alleviates gentamicin-induced acute kidney injury in rats by suppressing ferroptosis: Highlight on ACSL4, SLC7A11, NCOA4, FSP1 pathways and miR-378a-3p, LINC00618 expression. LncRNA TUG1 regulates miR-34a-5p / SIRT6 to participate in benzene-induced hematotoxicity through PI3K / AKT /mTOR signaling pathway. CDKN1A Promotes Cis-induced AKI by Inducing Cytoplasmic ROS Production and Ferroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1