{"title":"Reconstructing Early Microbial Life.","authors":"Betül Kaçar","doi":"10.1146/annurev-micro-041522-103400","DOIUrl":null,"url":null,"abstract":"<p><p>For more than 3.5 billion years, life experienced dramatic environmental extremes on Earth. These include shifts from oxygen-less to overoxygenated atmospheres and cycling between hothouse conditions and global glaciations. Meanwhile, an ecological revolution took place. Earth evolved from one dominated by microbial life to one containing the plants and animals that are most familiar today. Many key cellular features evolved early in the history of life, collectively defining the nature of our biosphere and underpinning human survival. Recent advances in molecular and evolutionary biology have profoundly deepened our understanding of the origin and evolution of microbes across deep time. However, the incorporation of molecular genetics, population biology, and evolutionary biology approaches into the study of Precambrian biota remains a significant challenge. This review synthesizes our current knowledge of early microbial life with an emphasis on ancient metabolisms. It also outlines the foundations of an emerging interdisciplinary area that integrates microbiology, paleobiology, and evolutionary synthetic biology to reconstruct ancient biological innovations.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-041522-103400","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For more than 3.5 billion years, life experienced dramatic environmental extremes on Earth. These include shifts from oxygen-less to overoxygenated atmospheres and cycling between hothouse conditions and global glaciations. Meanwhile, an ecological revolution took place. Earth evolved from one dominated by microbial life to one containing the plants and animals that are most familiar today. Many key cellular features evolved early in the history of life, collectively defining the nature of our biosphere and underpinning human survival. Recent advances in molecular and evolutionary biology have profoundly deepened our understanding of the origin and evolution of microbes across deep time. However, the incorporation of molecular genetics, population biology, and evolutionary biology approaches into the study of Precambrian biota remains a significant challenge. This review synthesizes our current knowledge of early microbial life with an emphasis on ancient metabolisms. It also outlines the foundations of an emerging interdisciplinary area that integrates microbiology, paleobiology, and evolutionary synthetic biology to reconstruct ancient biological innovations.
期刊介绍:
Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).