Caterpillar-parasitoid interactions: species-specific influences on host microbiome composition.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2024-09-14 DOI:10.1093/femsec/fiae115
Gabriele Gloder, Mitchel E Bourne, Maximilien A C Cuny, Christel Verreth, Sam Crauwels, Marcel Dicke, Erik H Poelman, Hans Jacquemyn, Bart Lievens
{"title":"Caterpillar-parasitoid interactions: species-specific influences on host microbiome composition.","authors":"Gabriele Gloder, Mitchel E Bourne, Maximilien A C Cuny, Christel Verreth, Sam Crauwels, Marcel Dicke, Erik H Poelman, Hans Jacquemyn, Bart Lievens","doi":"10.1093/femsec/fiae115","DOIUrl":null,"url":null,"abstract":"<p><p>There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae. Both internal and external bacterial densities were significantly higher for P. brassicae than P. rapae, while no differences were found between parasitized and nonparasitized caterpillars. In contrast, parasitism significantly affected the composition of the internal and external microbiome of the caterpillars and the parasitoid larvae, but the effects were dependent on the host and parasitoid species. Irrespective of host species, a Wolbachia species was exclusively found inside caterpillars parasitized by C. glomerata, as well as in the corresponding developing parasitoid larvae. Similarly, a Nosema species was abundantly present inside parasitized caterpillars and the parasitoid larvae, but this was independent of the host and the parasitoid species. We conclude that parasitism has pronounced effects on host microbiomes, but the effects depend on both the host and parasitoid species.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae115","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae. Both internal and external bacterial densities were significantly higher for P. brassicae than P. rapae, while no differences were found between parasitized and nonparasitized caterpillars. In contrast, parasitism significantly affected the composition of the internal and external microbiome of the caterpillars and the parasitoid larvae, but the effects were dependent on the host and parasitoid species. Irrespective of host species, a Wolbachia species was exclusively found inside caterpillars parasitized by C. glomerata, as well as in the corresponding developing parasitoid larvae. Similarly, a Nosema species was abundantly present inside parasitized caterpillars and the parasitoid larvae, but this was independent of the host and the parasitoid species. We conclude that parasitism has pronounced effects on host microbiomes, but the effects depend on both the host and parasitoid species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毛虫与寄生虫的相互作用:物种对宿主微生物组组成的特定影响。
越来越多的证据表明,寄主与寄生虫之间的相互作用会对寄主昆虫的微生物组产生明显影响,但目前还不清楚这种影响在多大程度上是由寄主和/或寄生虫造成的。在这里,我们比较了被Cotesia glomerata或Cotesia rubecula寄生的黄刺茧蜂毛虫和油菜茧蜂毛虫与未被寄生的毛虫的内部和外部微生物组。此外,我们还研究了寄生幼虫体内和体外的微生物群。在寄生和未寄生的毛虫之间没有发现差异。相比之下,寄生对毛虫和寄生幼虫体内外微生物组的组成有明显影响,但这种影响取决于寄主和寄生虫的种类。无论寄主物种如何,在被团扇毛虫寄生的毛虫体内以及相应的寄生幼虫发育过程中都只发现了一种沃尔巴克氏体(Wolbachia)。同样,被寄生的毛虫和寄生幼虫体内也大量存在一种诺斯玛菌,但这与寄主和寄生虫的种类无关。我们的结论是,寄生对宿主微生物组有明显的影响,但这种影响取决于宿主和寄生虫的种类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Functional redundancy buffers the effect of poly-extreme environmental conditions on Southern African dryland soil microbial communities. A respiro-fermentative strategy to survive nanoxia in Acidobacterium capsulatum. Diversity and networking of uni-cyanobacterial cultures and associated heterotrophic bacteria from the benthic microbial mat of a desert hydrothermal spring. Microbiome analysis of monarch butterflies reveals effects of development and diet. Environmental factors and potential probiotic lineages shape the active prokaryotic communities associated with healthy Penaeus stylirostris larvae and their rearing water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1