Comparative genome analysis and the genome-shaping role of long terminal repeat retrotransposons in the evolutionary divergence of fungal pathogens Blastomyces dermatitidis and Blastomyces gilchristii.
Lisa R McTaggart, Thomas W A Braukmann, Julianne V Kus
{"title":"Comparative genome analysis and the genome-shaping role of long terminal repeat retrotransposons in the evolutionary divergence of fungal pathogens Blastomyces dermatitidis and Blastomyces gilchristii.","authors":"Lisa R McTaggart, Thomas W A Braukmann, Julianne V Kus","doi":"10.1093/g3journal/jkae194","DOIUrl":null,"url":null,"abstract":"<p><p>Blastomyces dermatitidis and Blastomyces gilchristii are cryptic species of fungi that cause blastomycosis, an often severe disease involving pulmonary infection capable of systemic dissemination. While these species appear morphologically identical, differences exist in the genetic makeup, geographical range, and possibly the clinical presentation of infection. Here, we show genetic divergence between the cryptic species through both a Blastomyces species tree constructed from orthologous protein sequences and whole genome single-nucleotide variant phylogenomic analysis. Following linked-read sequencing and de novo genome assembly, we characterized and compared the genomes of 3 B. dermatitidis and 3 B. gilchristii isolates. The B. gilchristii genomes (73.25-75.4 Mb) were ∼8 Mb larger than the B. dermatitidis genomes (64.88-66.61 Mb). Average nucleotide identity was lower between genomes of different species than genomes of the same species, yet functional classification of genes suggested similar proteomes. The most striking difference involved long terminal repeat retrotransposons. Although the same retrotransposon elements were detected in the genomes, the quantity of elements differed between the 2 species. Gypsy retrotransposon content was significantly higher in B. gilchristii (38.04-39.26 Mb) than in B. dermatitidis (30.85-32.40 Mb), accounting for the majority of genome size difference between species. Age estimation and phylogenetic analysis of the reverse transcriptase domains suggested that these retrotransposons are relatively ancient, with genome insertion predating the speciation of B. dermatitidis and B. gilchristii. We postulate that different trajectories of genome contraction led to genetic incompatibility, reproductive isolation, and speciation, highlighting the role of transposable elements in fungal evolution.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae194","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Blastomyces dermatitidis and Blastomyces gilchristii are cryptic species of fungi that cause blastomycosis, an often severe disease involving pulmonary infection capable of systemic dissemination. While these species appear morphologically identical, differences exist in the genetic makeup, geographical range, and possibly the clinical presentation of infection. Here, we show genetic divergence between the cryptic species through both a Blastomyces species tree constructed from orthologous protein sequences and whole genome single-nucleotide variant phylogenomic analysis. Following linked-read sequencing and de novo genome assembly, we characterized and compared the genomes of 3 B. dermatitidis and 3 B. gilchristii isolates. The B. gilchristii genomes (73.25-75.4 Mb) were ∼8 Mb larger than the B. dermatitidis genomes (64.88-66.61 Mb). Average nucleotide identity was lower between genomes of different species than genomes of the same species, yet functional classification of genes suggested similar proteomes. The most striking difference involved long terminal repeat retrotransposons. Although the same retrotransposon elements were detected in the genomes, the quantity of elements differed between the 2 species. Gypsy retrotransposon content was significantly higher in B. gilchristii (38.04-39.26 Mb) than in B. dermatitidis (30.85-32.40 Mb), accounting for the majority of genome size difference between species. Age estimation and phylogenetic analysis of the reverse transcriptase domains suggested that these retrotransposons are relatively ancient, with genome insertion predating the speciation of B. dermatitidis and B. gilchristii. We postulate that different trajectories of genome contraction led to genetic incompatibility, reproductive isolation, and speciation, highlighting the role of transposable elements in fungal evolution.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.