Temperature sensing and virulence regulation in pathogenic bacteria.

IF 14 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Trends in Microbiology Pub Date : 2024-08-19 DOI:10.1016/j.tim.2024.07.009
Davide Roncarati, Andrea Vannini, Vincenzo Scarlato
{"title":"Temperature sensing and virulence regulation in pathogenic bacteria.","authors":"Davide Roncarati, Andrea Vannini, Vincenzo Scarlato","doi":"10.1016/j.tim.2024.07.009","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.07.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
致病细菌的温度感应和毒力调节。
致病细菌可以检测到各种环境信号,包括温度变化。突然和显著的温度变化是触发保护性热休克反应的危险信号,而微小的温度波动则通常向病原体发出信号,表明它已从一个环境转移到另一个环境,例如在感染过程中进入宿主体内的特定生态位。病原体利用后一种温度波动来协调关键毒力因子的表达。在这里,我们阐明了温度在调控细菌病原体毒力因子表达方面的关键作用。此外,我们还概述了病原体用来检测温度波动的分子机制,重点研究了利用蛋白质和核酸作为感应装置的系统。我们还讨论了气候变化对人类致病性疾病的潜在影响和风险程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Microbiology
Trends in Microbiology 生物-生化与分子生物学
CiteScore
25.30
自引率
0.60%
发文量
193
审稿时长
6-12 weeks
期刊介绍: Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.
期刊最新文献
Short-chain fatty acids in viral infection: the underlying mechanisms, opportunities, and challenges. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Neutrophils - an understudied bystander in dengue? C4 cereal and biofuel crop microbiomes. Linking microbiome temporal dynamics to host ecology in the wild.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1