Jiaqi Yang, Manli Yao, Dan Zhang, Yu Zhao, Guitian Gao
{"title":"Microbial community diversity analysis of kiwifruit pollen and identification of potential pathogens","authors":"Jiaqi Yang, Manli Yao, Dan Zhang, Yu Zhao, Guitian Gao","doi":"10.1007/s10482-024-02013-4","DOIUrl":null,"url":null,"abstract":"<div><p>The kiwifruit industry typically uses commercial pollen for artificial pollination. However, during the collection of male flowers and pollen production, pollen can be easily contaminated by pathogenic bacteria that cause diseases such as canker and flower rot. Consequently, it is crucial to understand the structure of the pollen microbial community. This study employed Illumina high-throughput sequencing technology to analyze the fungal and bacterial composition in pollen samples from various regions in Shaanxi Province. Concurrently, potential pathogenic strains were isolated using traditional microbial isolation and cultivation techniques, and their molecular identification was performed through 16S rDNA sequence analysis. A tieback test was conducted on healthy branches to verify the pathogenicity of the strains. The results revealed a rich diversity of fungi and bacteria in kiwifruit pollen. At the phylum level, pollen fungi were mainly distributed in Ascomycota, and bacteria were mainly distributed in Proteobacteria and Firmicutes. The dominant fungal genera were <i>Mycosphaerella</i>, <i>Aspergillus</i>, and <i>Cladosporium;</i> the dominant bacterial genera were <i>Weissella</i>, <i>Pantoea</i>, <i>Enterobacter</i>, and <i>Pseudomonas</i>, respectively. Additionally, both <i>Erwinia persicina</i> and <i>Pseudomonas fluorescens</i>, isolated from pollen, exhibited high pathogenicity toward healthy kiwifruit branches. These findings contribute to a deeper understanding of the microbial diversity in commercial kiwifruit pollen used for mass pollination.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10482-024-02013-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The kiwifruit industry typically uses commercial pollen for artificial pollination. However, during the collection of male flowers and pollen production, pollen can be easily contaminated by pathogenic bacteria that cause diseases such as canker and flower rot. Consequently, it is crucial to understand the structure of the pollen microbial community. This study employed Illumina high-throughput sequencing technology to analyze the fungal and bacterial composition in pollen samples from various regions in Shaanxi Province. Concurrently, potential pathogenic strains were isolated using traditional microbial isolation and cultivation techniques, and their molecular identification was performed through 16S rDNA sequence analysis. A tieback test was conducted on healthy branches to verify the pathogenicity of the strains. The results revealed a rich diversity of fungi and bacteria in kiwifruit pollen. At the phylum level, pollen fungi were mainly distributed in Ascomycota, and bacteria were mainly distributed in Proteobacteria and Firmicutes. The dominant fungal genera were Mycosphaerella, Aspergillus, and Cladosporium; the dominant bacterial genera were Weissella, Pantoea, Enterobacter, and Pseudomonas, respectively. Additionally, both Erwinia persicina and Pseudomonas fluorescens, isolated from pollen, exhibited high pathogenicity toward healthy kiwifruit branches. These findings contribute to a deeper understanding of the microbial diversity in commercial kiwifruit pollen used for mass pollination.
期刊介绍:
Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.