Elham Entezami , Mohammad Reza Mosaddeghi , Mehran Shirvani , Banafshe Khalili , Mehdi Bazarganipour
{"title":"Interactive effects of Ag nanoparticles/nitrate and plant root systems on quality indicators and aggregate stability of two texturally-different soils","authors":"Elham Entezami , Mohammad Reza Mosaddeghi , Mehran Shirvani , Banafshe Khalili , Mehdi Bazarganipour","doi":"10.1016/j.still.2024.106257","DOIUrl":null,"url":null,"abstract":"<div><p>Widespread sources of silver nanoparticles (AgNPs) might threaten soil ecosystems. Most studies on NPs have been carried out in plant-free soils, which do not represent natural conditions. Monitoring the fate and possible effects of nanoparticles (NPs) in soil-plant systems is crucial for predicting their environmental consequences. Plant root systems might respond differently to Ag types/concentrations, associated with changes in microbially-induced soil structural stability as well as soil C pools but evidence is not available. Therefore, a greenhouse experiment was conducted in a factorial arrangement of treatments within a randomized block design. The treatments included: 1) soil types (loamy sand and sandy loam), 2) root systems (non-planted, wheat with fibrous roots and safflower with taproot), 3) Ag types (no-Ag added, AgNPs of mean size 38.6 nm, and AgNO<sub>3</sub>), and 4) Ag concentrations (50 and 100 mg kg<sup>–1</sup> soil). Soil samples were collected from root zone and non-planted soil 110 days after sowing. Soil quality indicators including high energy moisture characteristic (HEMC) indicators, percent of water-stable aggregates (WSA), water-dispersible clay (DC), substrate-induced respiration (SIR), microbial biomass carbon (MBC) and metabolic quotient (<em>q</em><sub>CO2</sub>) were determined. The results showed that the soil structure was improved in the presence of Ag and plants. Structural stability indicators were greater in the safflower root zone followed by the wheat root zone and the non-planted soil. A clear effect of Ag on HEMC was observed in the 100 mg AgNPs kg<sup>–1</sup> treatment. The stability ratio (SR, ratio of fast-wetting to slow-wetting structural indexes) of the AgNPs-treated soils (SR = 0.79) was significantly greater than that of the AgNO<sub>3</sub>-treated soils (SR = 0.78) followed by the control (no-Ag) soils (SR = 0.74). In the AgNO<sub>3</sub>-treated soils, the SIR was significantly lower than in the AgNPs-treated soils. The SIR of the 50 mg kg<sup>–1</sup> Ag treatment (232 mg CO<sub>2</sub>-C kg<sup>–1</sup>) was higher than the 100 mg kg<sup>–1</sup> (227 mg CO<sub>2</sub>-C kg<sup>–1</sup>). Microbial biomass was significantly affected by Ag types/concentrations and all Ag-treated soils exhibited significantly lower MBC than control. The <em>q</em><sub>CO2</sub>, the index of stress to microbial community, was significantly greater in the Ag-treated soils. Scanning electron microscope images confirmed that AgNPs altered the arrangement of particles which was greater in the higher AgNPs concentration. These results imply that multiple factors (root systems, soil texture, Ag type/concentration) may combine additively/regressively to affect soil quality indicators, which may have important consequences for soil ecosystem services.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"244 ","pages":"Article 106257"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724002587","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Widespread sources of silver nanoparticles (AgNPs) might threaten soil ecosystems. Most studies on NPs have been carried out in plant-free soils, which do not represent natural conditions. Monitoring the fate and possible effects of nanoparticles (NPs) in soil-plant systems is crucial for predicting their environmental consequences. Plant root systems might respond differently to Ag types/concentrations, associated with changes in microbially-induced soil structural stability as well as soil C pools but evidence is not available. Therefore, a greenhouse experiment was conducted in a factorial arrangement of treatments within a randomized block design. The treatments included: 1) soil types (loamy sand and sandy loam), 2) root systems (non-planted, wheat with fibrous roots and safflower with taproot), 3) Ag types (no-Ag added, AgNPs of mean size 38.6 nm, and AgNO3), and 4) Ag concentrations (50 and 100 mg kg–1 soil). Soil samples were collected from root zone and non-planted soil 110 days after sowing. Soil quality indicators including high energy moisture characteristic (HEMC) indicators, percent of water-stable aggregates (WSA), water-dispersible clay (DC), substrate-induced respiration (SIR), microbial biomass carbon (MBC) and metabolic quotient (qCO2) were determined. The results showed that the soil structure was improved in the presence of Ag and plants. Structural stability indicators were greater in the safflower root zone followed by the wheat root zone and the non-planted soil. A clear effect of Ag on HEMC was observed in the 100 mg AgNPs kg–1 treatment. The stability ratio (SR, ratio of fast-wetting to slow-wetting structural indexes) of the AgNPs-treated soils (SR = 0.79) was significantly greater than that of the AgNO3-treated soils (SR = 0.78) followed by the control (no-Ag) soils (SR = 0.74). In the AgNO3-treated soils, the SIR was significantly lower than in the AgNPs-treated soils. The SIR of the 50 mg kg–1 Ag treatment (232 mg CO2-C kg–1) was higher than the 100 mg kg–1 (227 mg CO2-C kg–1). Microbial biomass was significantly affected by Ag types/concentrations and all Ag-treated soils exhibited significantly lower MBC than control. The qCO2, the index of stress to microbial community, was significantly greater in the Ag-treated soils. Scanning electron microscope images confirmed that AgNPs altered the arrangement of particles which was greater in the higher AgNPs concentration. These results imply that multiple factors (root systems, soil texture, Ag type/concentration) may combine additively/regressively to affect soil quality indicators, which may have important consequences for soil ecosystem services.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.