Linlin Wu , Mingchang Wang , Dehua Mao , Xiaoyan Li , Zongming Wang
{"title":"Temperature related to the spatial heterogeneity of wetland soil total nitrogen content in a frozen zone","authors":"Linlin Wu , Mingchang Wang , Dehua Mao , Xiaoyan Li , Zongming Wang","doi":"10.1016/j.still.2024.106254","DOIUrl":null,"url":null,"abstract":"<div><p>Changes in soil total nitrogen (N) content would affect wetland function and the global N cycle. Determination of spatial heterogeneity controlling factors of wetland soil total N content per unit mass is essential to assess responses of ecosystem N cycle to global change. However, such information is limited in permafrost zones because few soil profiles have been acquired and methods to predict spatial distributions of wetland soil total N content in large areas are inefficient, which increase uncertainty in evaluations of N cycle at national or global scales. To determine the spatial heterogeneity of wetland soil total N content at different soil depths and frozen zones and the factors controlling wetland soil total N content in the frozen zones of Northeast China, the spatial pattern of wetland soil total N content was investigated by using a random forest method that combined field samples with environmental factors. Vertically, wetland soil total N content decreased with increasing soil depth, with the highest content in the top soil layer (0–30 cm). Spatially, wetland soil total N content decreased from northwest to southeast, with relatively high total N content in a continuous permafrost zone and relatively low total N content in a seasonally frozen zone. The overall coefficient of variation of wetland soil total N content in the frozen zones of Northeast was 29.58 %, indicating moderate variation. Land surface temperature, mean annual temperature, and mean annual humidity significantly affected total N content in 0–30 and 30–60 cm soil layers, suggesting that variations in temperature and humidity altered sequestration processes of wetland soil total N content. In the 60–100 cm soil layer, compared with other environmental factors, mean annual humidity, altitude, and mean annual precipitation had the greatest influence on the spatial distribution of wetland soil total N content. The study unravels the spatial pattern of soil total N content in frozen zones of Northeast China and reflects the direct and indirect effects of environmental factors on total N content. This provides a basis for the management and protection of wetland ecosystems.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"244 ","pages":"Article 106254"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724002551","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in soil total nitrogen (N) content would affect wetland function and the global N cycle. Determination of spatial heterogeneity controlling factors of wetland soil total N content per unit mass is essential to assess responses of ecosystem N cycle to global change. However, such information is limited in permafrost zones because few soil profiles have been acquired and methods to predict spatial distributions of wetland soil total N content in large areas are inefficient, which increase uncertainty in evaluations of N cycle at national or global scales. To determine the spatial heterogeneity of wetland soil total N content at different soil depths and frozen zones and the factors controlling wetland soil total N content in the frozen zones of Northeast China, the spatial pattern of wetland soil total N content was investigated by using a random forest method that combined field samples with environmental factors. Vertically, wetland soil total N content decreased with increasing soil depth, with the highest content in the top soil layer (0–30 cm). Spatially, wetland soil total N content decreased from northwest to southeast, with relatively high total N content in a continuous permafrost zone and relatively low total N content in a seasonally frozen zone. The overall coefficient of variation of wetland soil total N content in the frozen zones of Northeast was 29.58 %, indicating moderate variation. Land surface temperature, mean annual temperature, and mean annual humidity significantly affected total N content in 0–30 and 30–60 cm soil layers, suggesting that variations in temperature and humidity altered sequestration processes of wetland soil total N content. In the 60–100 cm soil layer, compared with other environmental factors, mean annual humidity, altitude, and mean annual precipitation had the greatest influence on the spatial distribution of wetland soil total N content. The study unravels the spatial pattern of soil total N content in frozen zones of Northeast China and reflects the direct and indirect effects of environmental factors on total N content. This provides a basis for the management and protection of wetland ecosystems.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.