Origin of the post-orogenic dyke swarms of Saharan Metacraton, at Qaret El-Maiyit-Bir Safsaf area, southwest Egypt: Constraints on the magmatic–tectonic processes at the end of the Precambrian
{"title":"Origin of the post-orogenic dyke swarms of Saharan Metacraton, at Qaret El-Maiyit-Bir Safsaf area, southwest Egypt: Constraints on the magmatic–tectonic processes at the end of the Precambrian","authors":"Shaaban Mashaal, Amany Abdel-Bary, Azza Ragab","doi":"10.1016/j.jafrearsci.2024.105378","DOIUrl":null,"url":null,"abstract":"<div><p>Deep in the Western Desert of Egypt, in the southernmost part, between Qaret El-Maiyit and Bir Safsaf, swarms of dykes cut through the Neoproterozoic rocks. This area lies halfway between the juvenile crust of the Arabian-Nubian Shield (ANS) and the Gebel Kamil terrains, close to the border with Libya. Acidic dykes include rhyolites and trachy-dacites. Intermediate dykes include trachy-andesite, basalt-trachy-andesite, and basalt-andesite, while basic dykes consist of basalt. Felsic dykes are more numerous and younger compared to the mafic (intermediate and basic) dykes. Felsic dykes trend mostly run to the northeast and northwest, while mafic dykes mainly run to the northwest, less frequently to the eastwest. Acidic and intermediate dykes show elevated REE concentrations (up to 164 and 203 ppm, respectively) with highly fractionated patterns (av. (La/Lu)<sub>N</sub> = 20.56 and 18) and moderately fractionated HREEs (av. (Gd/Lu)<sub>N</sub> = 2.5 and 3.2) and LREEs (av. (La/Sm)N = 5.7 and 3.6 respectively). The basic dyke samples exhibit modest REE concentrations (up to 112 ppm), weakly fractionated patterns (av. (La/Lu)<sub>N</sub> = 8), and mildly to weakly fractionated HREE (av. (Gd/Lu)<sub>N</sub> = 2.3) and LREEs (av. (La/Sm)<sub>N</sub> = 2.5) patterns. There are no recognizable Eu anomalies in the dyke samples. The magma ascended in an extensional setting and the geochemical features indicate a subduction mode, possibly originating from the Atmur-Delgo suture zone in northern Sudan or by mantle delamination during the early Neoproterozoic. Both the felsic and mafic dykes are derived from a mafic calc-alkaline melt and show fractionation on a single downward line, indicating a genetic relationship. The mafic dykes were formed by partial melting of an enriched mantle source (about 10%) that started at 2.7–3.0 GPa and a solidus temperature of about 1420 °C. The enrichment of the mantle melt beneath the Saharan metacraton, which is the origin of the studied melts, could be related to mantle delamination.</p></div>","PeriodicalId":14874,"journal":{"name":"Journal of African Earth Sciences","volume":"219 ","pages":"Article 105378"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of African Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1464343X24002115","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep in the Western Desert of Egypt, in the southernmost part, between Qaret El-Maiyit and Bir Safsaf, swarms of dykes cut through the Neoproterozoic rocks. This area lies halfway between the juvenile crust of the Arabian-Nubian Shield (ANS) and the Gebel Kamil terrains, close to the border with Libya. Acidic dykes include rhyolites and trachy-dacites. Intermediate dykes include trachy-andesite, basalt-trachy-andesite, and basalt-andesite, while basic dykes consist of basalt. Felsic dykes are more numerous and younger compared to the mafic (intermediate and basic) dykes. Felsic dykes trend mostly run to the northeast and northwest, while mafic dykes mainly run to the northwest, less frequently to the eastwest. Acidic and intermediate dykes show elevated REE concentrations (up to 164 and 203 ppm, respectively) with highly fractionated patterns (av. (La/Lu)N = 20.56 and 18) and moderately fractionated HREEs (av. (Gd/Lu)N = 2.5 and 3.2) and LREEs (av. (La/Sm)N = 5.7 and 3.6 respectively). The basic dyke samples exhibit modest REE concentrations (up to 112 ppm), weakly fractionated patterns (av. (La/Lu)N = 8), and mildly to weakly fractionated HREE (av. (Gd/Lu)N = 2.3) and LREEs (av. (La/Sm)N = 2.5) patterns. There are no recognizable Eu anomalies in the dyke samples. The magma ascended in an extensional setting and the geochemical features indicate a subduction mode, possibly originating from the Atmur-Delgo suture zone in northern Sudan or by mantle delamination during the early Neoproterozoic. Both the felsic and mafic dykes are derived from a mafic calc-alkaline melt and show fractionation on a single downward line, indicating a genetic relationship. The mafic dykes were formed by partial melting of an enriched mantle source (about 10%) that started at 2.7–3.0 GPa and a solidus temperature of about 1420 °C. The enrichment of the mantle melt beneath the Saharan metacraton, which is the origin of the studied melts, could be related to mantle delamination.
期刊介绍:
The Journal of African Earth Sciences sees itself as the prime geological journal for all aspects of the Earth Sciences about the African plate. Papers dealing with peripheral areas are welcome if they demonstrate a tight link with Africa.
The Journal publishes high quality, peer-reviewed scientific papers. It is devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be considered. Papers must have international appeal and should present work of more regional than local significance and dealing with well identified and justified scientific questions. Specialised technical papers, analytical or exploration reports must be avoided. Papers on applied geology should preferably be linked to such core disciplines and must be addressed to a more general geoscientific audience.