Microstructural evolution and mechanical behavior of WC–4wt.%TiC–3wt.%TaC–12wt.%Co refractory cermet consolidated by spark plasma sintering of mechanically activated powder mixtures
{"title":"Microstructural evolution and mechanical behavior of WC–4wt.%TiC–3wt.%TaC–12wt.%Co refractory cermet consolidated by spark plasma sintering of mechanically activated powder mixtures","authors":"","doi":"10.1016/j.apt.2024.104625","DOIUrl":null,"url":null,"abstract":"<div><p>The paper studied the structural features and physicomechanical properties of the WC–4wt.%TiC–3wt.%TaC–12wt.%Co composite refractory hard alloy system obtained by spark plasma sintering (SPS) from a preliminarily mechanically activated powder. It has been shown that preliminary mechanical activation in a planetary mill contributed to the comminution of agglomerates and the formation of a monomodal particle size distribution with a predominance of the submicron fraction, which intensifies the densification processes during subsequent consolidation by the SPS method. Kinetic analysis of the SPS process showed a two-stage sintering pattern with intense densification at temperatures above 790 °C due to rearrangement of WC, TiC, TaC particles and melting of the cobalt binder. It has been found that the SPS method does not lead to the formation of undesirable secondary phases in the entire sintering temperature range. A sintering temperature of 1200 °C is optimal for achieving the best structural homogeneity, density and mechanical properties, providing optimal distribution of carbide phases and the cobalt binder. The microstructure of the sample obtained at 1200 °C represents a refractory skeleton of WC grains with TiC and TaC carbide particles uniformly distributed throughout the volume. Improved fluidity of the melted cobalt binder and its mobile redistribution contribute to increased compactness of the structure and reduced porosity of the material. Samples sintered at 1200 °C possess high physicomechanical characteristics: relative density 99.99 %, hardness HV30 1623.2, bending strength 1125.1 MPa, fracture toughness 10.5 MN⋅m<sup>1/2</sup>. The abrasive wear resistance of a newly synthesized hard material was evaluated through a turning operation. Results showed durability, indicating promise for cutting tool applications and the need for further research to fully characterize the performance of this novel material.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003017","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper studied the structural features and physicomechanical properties of the WC–4wt.%TiC–3wt.%TaC–12wt.%Co composite refractory hard alloy system obtained by spark plasma sintering (SPS) from a preliminarily mechanically activated powder. It has been shown that preliminary mechanical activation in a planetary mill contributed to the comminution of agglomerates and the formation of a monomodal particle size distribution with a predominance of the submicron fraction, which intensifies the densification processes during subsequent consolidation by the SPS method. Kinetic analysis of the SPS process showed a two-stage sintering pattern with intense densification at temperatures above 790 °C due to rearrangement of WC, TiC, TaC particles and melting of the cobalt binder. It has been found that the SPS method does not lead to the formation of undesirable secondary phases in the entire sintering temperature range. A sintering temperature of 1200 °C is optimal for achieving the best structural homogeneity, density and mechanical properties, providing optimal distribution of carbide phases and the cobalt binder. The microstructure of the sample obtained at 1200 °C represents a refractory skeleton of WC grains with TiC and TaC carbide particles uniformly distributed throughout the volume. Improved fluidity of the melted cobalt binder and its mobile redistribution contribute to increased compactness of the structure and reduced porosity of the material. Samples sintered at 1200 °C possess high physicomechanical characteristics: relative density 99.99 %, hardness HV30 1623.2, bending strength 1125.1 MPa, fracture toughness 10.5 MN⋅m1/2. The abrasive wear resistance of a newly synthesized hard material was evaluated through a turning operation. Results showed durability, indicating promise for cutting tool applications and the need for further research to fully characterize the performance of this novel material.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)