Bingyu Zhao , Jianjun Wu , Meng Chen , Jingyu Lin , Ruohua Du
{"title":"Seasonally inundated area extraction based on long time-series surface water dynamics for improved flood mapping","authors":"Bingyu Zhao , Jianjun Wu , Meng Chen , Jingyu Lin , Ruohua Du","doi":"10.1016/j.isprsjprs.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate extraction of Seasonally Inundated Area (SIA) is pivotal for precise delineation of Flood Inundation Area (FIA). Current methods predominantly rely on Water Inundation Frequency (WIF) to extract SIA, which, due to the lack of analysis of dynamic surface water changes, often yields less accurate and robust results. This significantly hampers the rapid and precise mapping of FIA. In the study, based on the Harmonic Models constructed from Long Time-series Surface Water (LTSW) dynamics, an SIA extraction approach (SHM) was introduced to enhance their accuracy and robustness, thereby improving flood mapping. The experiments were conducted in Poyang Lake, a region characterized by active hydrological phenomena. Sentinel-1/2 remote sensing data were utilized to extract LTSW. Harmonic analysis was applied to the LTSW dataset, using the amplitude terms in the harmonic model to characterise the frequency of variation between land and water for the surface units, thus extracting the SIAs. The results reveal that the harmonic model parameters are capable of portraying SIA. In comparison to the commonly used WIF thresholding method for SIA extraction, the SHM approach demonstrates superior accuracy and robustness. Leveraging the SIA extracted through SHM, a higher level of accuracy in FIA extraction is achieved. Overall, the SHM offers notable advantages, including high accuracy, automation, and robustness. It offers reliable reference water extents for flood mapping, especially in areas with active and complex hydrological dynamics. SHM can play a crucial role in emergency response to flood disasters, providing essential technical support for natural disaster management and related departments.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"217 ","pages":"Pages 32-52"},"PeriodicalIF":10.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003071","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate extraction of Seasonally Inundated Area (SIA) is pivotal for precise delineation of Flood Inundation Area (FIA). Current methods predominantly rely on Water Inundation Frequency (WIF) to extract SIA, which, due to the lack of analysis of dynamic surface water changes, often yields less accurate and robust results. This significantly hampers the rapid and precise mapping of FIA. In the study, based on the Harmonic Models constructed from Long Time-series Surface Water (LTSW) dynamics, an SIA extraction approach (SHM) was introduced to enhance their accuracy and robustness, thereby improving flood mapping. The experiments were conducted in Poyang Lake, a region characterized by active hydrological phenomena. Sentinel-1/2 remote sensing data were utilized to extract LTSW. Harmonic analysis was applied to the LTSW dataset, using the amplitude terms in the harmonic model to characterise the frequency of variation between land and water for the surface units, thus extracting the SIAs. The results reveal that the harmonic model parameters are capable of portraying SIA. In comparison to the commonly used WIF thresholding method for SIA extraction, the SHM approach demonstrates superior accuracy and robustness. Leveraging the SIA extracted through SHM, a higher level of accuracy in FIA extraction is achieved. Overall, the SHM offers notable advantages, including high accuracy, automation, and robustness. It offers reliable reference water extents for flood mapping, especially in areas with active and complex hydrological dynamics. SHM can play a crucial role in emergency response to flood disasters, providing essential technical support for natural disaster management and related departments.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.