Study on the deterioration of mortar by enteromorpha-diatoms during green tide

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Biodeterioration & Biodegradation Pub Date : 2024-08-20 DOI:10.1016/j.ibiod.2024.105885
Xiaojie Chen , Hui Rong , Dee Liu , Yang Feng , Zhihua Liu , Yong Yang
{"title":"Study on the deterioration of mortar by enteromorpha-diatoms during green tide","authors":"Xiaojie Chen ,&nbsp;Hui Rong ,&nbsp;Dee Liu ,&nbsp;Yang Feng ,&nbsp;Zhihua Liu ,&nbsp;Yong Yang","doi":"10.1016/j.ibiod.2024.105885","DOIUrl":null,"url":null,"abstract":"<div><p>Similar to the deterioration of construction materials by airborne algae, hydrophytic algae can deteriorate cementitious materials and change the performance of structures, thereby reducing the safety and economics of marine facilities. Frequent outbreaks of green tides have occurred in recent years, and algae have been shown to deteriorate calcium substances in cementitious materials. Therefore, the pattern of deterioration of cement by algae as a result of green tide outbreaks is important for extending the durability of marine installations. For this reason, the dominant species of the green tide outbreak, Enteromorpha, and the marine primary producer, diatoms, were selected to simulate the green tide outbreak in this paper. Then, in the paper, the colonization law of Enteromorpha and diatom and the calcium loss law in mortar are discussed. Results showed four stages of Enteromorpha-diatoms colonization on the mortar surface (diatoms colonization within 15 days, release of spores from Enteromorpha, germination of spores from Enteromorpha within 60 days, and transformation of the relationship between the colonization of Enteromorpha and diatoms). Three channels for the loss of calcium on the surface of the mortar include the uptake and transformation, the complexation of biofilm, and the dissolution and deposition. Additionally, Enteromorpha-diatoms can deteriorate the mortar surface, mineral composition, and microstructure.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"195 ","pages":"Article 105885"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524001562","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Similar to the deterioration of construction materials by airborne algae, hydrophytic algae can deteriorate cementitious materials and change the performance of structures, thereby reducing the safety and economics of marine facilities. Frequent outbreaks of green tides have occurred in recent years, and algae have been shown to deteriorate calcium substances in cementitious materials. Therefore, the pattern of deterioration of cement by algae as a result of green tide outbreaks is important for extending the durability of marine installations. For this reason, the dominant species of the green tide outbreak, Enteromorpha, and the marine primary producer, diatoms, were selected to simulate the green tide outbreak in this paper. Then, in the paper, the colonization law of Enteromorpha and diatom and the calcium loss law in mortar are discussed. Results showed four stages of Enteromorpha-diatoms colonization on the mortar surface (diatoms colonization within 15 days, release of spores from Enteromorpha, germination of spores from Enteromorpha within 60 days, and transformation of the relationship between the colonization of Enteromorpha and diatoms). Three channels for the loss of calcium on the surface of the mortar include the uptake and transformation, the complexation of biofilm, and the dissolution and deposition. Additionally, Enteromorpha-diatoms can deteriorate the mortar surface, mineral composition, and microstructure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿潮期间肠藻硅藻对灰泥的劣化研究
与空气中的藻类对建筑材料的恶化作用类似,水生藻类也会恶化胶凝材料,改变结构的性能,从而降低海洋设施的安全性和经济性。近年来,绿潮频繁爆发,藻类已被证明会使水泥基材料中的钙物质变质。因此,绿潮爆发导致的藻类对水泥的劣化模式对于延长海洋设施的耐久性非常重要。因此,本文选择了绿潮爆发的主要物种肠藻和海洋初级生产者硅藻来模拟绿潮爆发。然后,本文讨论了肠藻和硅藻的定殖规律以及砂浆中的钙流失规律。结果表明,砂浆表面的肠藻-硅藻定殖分为四个阶段(15 天内硅藻定殖、肠藻释放孢子、60 天内肠藻孢子发芽、肠藻与硅藻定殖关系的转变)。灰泥表面钙流失的三个途径包括吸收和转化、生物膜的复合以及溶解和沉积。此外,肠藻-硅藻会破坏砂浆表面、矿物成分和微观结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
期刊最新文献
Identification of the key factors influencing biodeterioration of open-air cultural heritage in the temperate climate zone of China The impacts of flagellin on larval metamorphosis of mussel Mytilus coruscus varied with protein structure Comprehending microplastic pollution in diverse environment: Assessing fate, impacts, and remediation approaches Comparative studies on the effectiveness of proteases and enzymes from dietary supplements in the degradation of polylactide (PLA) Bioremediation approaches for chromium detoxification and transformation: Advanced strategies and future Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1