Untangling the pseudoknots of SARS-CoV-2: Insights into structural heterogeneity and plasticity

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2024-08-21 DOI:10.1016/j.sbi.2024.102912
Justin Aruda , Scott L. Grote , Silvi Rouskin
{"title":"Untangling the pseudoknots of SARS-CoV-2: Insights into structural heterogeneity and plasticity","authors":"Justin Aruda ,&nbsp;Scott L. Grote ,&nbsp;Silvi Rouskin","doi":"10.1016/j.sbi.2024.102912","DOIUrl":null,"url":null,"abstract":"<div><p>Since the onset of the COVID-19 pandemic, one productive area of research has focused on the intricate two- and three-dimensional structures taken on by SARS-CoV-2's RNA genome. These structures control essential viral processes, making them tempting targets for therapeutic intervention. This review focuses on two such structured regions, the frameshift stimulation element (FSE), which controls the translation of viral protein, and the 3′ untranslated region (3′ UTR), which is thought to regulate genome replication. For the FSE, we discuss its canonical pseudoknot's threaded and unthreaded topologies, as well as the diversity of competing two-dimensional structures formed by local and long-distance base pairing. For the 3′ UTR, we review the evidence both for and against the formation of its replication-enabling pseudoknot.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24001398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the onset of the COVID-19 pandemic, one productive area of research has focused on the intricate two- and three-dimensional structures taken on by SARS-CoV-2's RNA genome. These structures control essential viral processes, making them tempting targets for therapeutic intervention. This review focuses on two such structured regions, the frameshift stimulation element (FSE), which controls the translation of viral protein, and the 3′ untranslated region (3′ UTR), which is thought to regulate genome replication. For the FSE, we discuss its canonical pseudoknot's threaded and unthreaded topologies, as well as the diversity of competing two-dimensional structures formed by local and long-distance base pairing. For the 3′ UTR, we review the evidence both for and against the formation of its replication-enabling pseudoknot.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解开 SARS-CoV-2 的假结:洞察结构异质性和可塑性
自 COVID-19 大流行以来,一个富有成效的研究领域集中在 SARS-CoV-2 的 RNA 基因组所具有的错综复杂的二维和三维结构上。这些结构控制着病毒的基本过程,使其成为治疗干预的诱人目标。本综述将重点讨论两个这样的结构区域,即控制病毒蛋白质翻译的换帧刺激元件(FSE)和被认为能调节基因组复制的 3′ 非翻译区(3′ UTR)。对于 FSE,我们讨论了其典型的假结的螺纹和非螺纹拓扑结构,以及由局部和长距离碱基配对形成的竞争性二维结构的多样性。对于 3′ UTR,我们回顾了支持和反对形成其复制功能假结的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
The mechano-chemistry of a viral genome packaging motor Characterizing protein-protein interactions with thermal proteome profiling Retraction notice to “Liquid-EM goes viral – visualizing structure and dynamics” [Curr Opin Struct Biol 75 (August 2022) 102426] Non-canonical amino acids for site-directed spin labeling of membrane proteins Empowering the molecular ruler techniques with unnatural base pair system to explore conformational dynamics of flaviviral RNAs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1