Ying Li , Yu Zeng , Shuo Zhao , Zhen Wang , Li Chen , Kequan Chen
{"title":"ORP-regulated natural accumulation of pyruvate in Actinobacillus succinogenes 130Z","authors":"Ying Li , Yu Zeng , Shuo Zhao , Zhen Wang , Li Chen , Kequan Chen","doi":"10.1016/j.bej.2024.109459","DOIUrl":null,"url":null,"abstract":"<div><p>Pyruvate, a pivotal metabolite in the glycolytic pathway, typically confronts substantial barriers to its natural accumulation within microbial cells. This study successfully facilitated the natural accumulation of pyruvate in <em>Actinobacillus succinogenes</em> 130Z by fine-tuning the oxidation-reduction potential (ORP) in the fermentation milieu. A mechanistic exploration revealed that the accumulation of pyruvate was optimized when ORP conditions favorably modulated pyruvate kinase activity and concurrently suppressed succinate dehydrogenase activity. By integrating the influence of metal ions on enzymatic functions with an innovative aluminum ion-mediated ORP control strategy, we achieved a pyruvate yield of 27.54 g/L over 20 hours, which constitutes an 89.54 % increase compared to the baseline. Additionally, the production rate of pyruvate reached 1.38 g/L·h. This investigation not only elucidates the metabolic underpinnings that facilitate the natural enrichment of glycolytic intermediates in <em>Actinobacillus succinogenes</em> 130Z but also lays a robust theoretical foundation for the industrial-scale fermentation of pyruvate. Moreover, the capability to efficiently and rapidly concentrate essential platform metabolites within the glycolytic pathway is of paramount significance, potentially propelling forward the research and synthesis of various downstream metabolic products.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"211 ","pages":"Article 109459"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002468","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pyruvate, a pivotal metabolite in the glycolytic pathway, typically confronts substantial barriers to its natural accumulation within microbial cells. This study successfully facilitated the natural accumulation of pyruvate in Actinobacillus succinogenes 130Z by fine-tuning the oxidation-reduction potential (ORP) in the fermentation milieu. A mechanistic exploration revealed that the accumulation of pyruvate was optimized when ORP conditions favorably modulated pyruvate kinase activity and concurrently suppressed succinate dehydrogenase activity. By integrating the influence of metal ions on enzymatic functions with an innovative aluminum ion-mediated ORP control strategy, we achieved a pyruvate yield of 27.54 g/L over 20 hours, which constitutes an 89.54 % increase compared to the baseline. Additionally, the production rate of pyruvate reached 1.38 g/L·h. This investigation not only elucidates the metabolic underpinnings that facilitate the natural enrichment of glycolytic intermediates in Actinobacillus succinogenes 130Z but also lays a robust theoretical foundation for the industrial-scale fermentation of pyruvate. Moreover, the capability to efficiently and rapidly concentrate essential platform metabolites within the glycolytic pathway is of paramount significance, potentially propelling forward the research and synthesis of various downstream metabolic products.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.