A DFT investigation of Ti-substituted CaZrS3 for tailored photovoltaic properties

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-20 DOI:10.1016/j.commatsci.2024.113286
{"title":"A DFT investigation of Ti-substituted CaZrS3 for tailored photovoltaic properties","authors":"","doi":"10.1016/j.commatsci.2024.113286","DOIUrl":null,"url":null,"abstract":"<div><p>Transition Metal Chalcogenide Perovskites (TMCP) have been in the spotlight due to their exceptional optoelectronic properties. <span><math><msub><mrow><mi>CaZrS</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is one among them with an experimental bandgap of 1.90 eV. If its bandgap is tuned to lower values, it can be employed in additional photovoltaic applications, such as solar cell absorbers. In this work, the transition metal element Zr in <span><math><msub><mrow><mi>CaZrS</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is substituted with Ti atoms in different proportions and the optoelectronic properties are investigated using Density Functional Theory (DFT). The optoelectronic calculations are all done using the DFT+U method including the spin–orbit coupling. With substitutional alloying, we successfully tuned the energy gap from 1.91 eV to 1.18 eV and the photovoltaic properties were also observed to be modified. For the substituted <span><math><mrow><msub><mrow><mi>CaZr</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><msub><mrow><mi>Ti</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> samples, large birefringence is observed. This indicates enhancement in optical anisotropy via substitutional alloying which is significant in both linear and nonlinear optoelectronic applications like polarizers, wave plates etc.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562400507X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition Metal Chalcogenide Perovskites (TMCP) have been in the spotlight due to their exceptional optoelectronic properties. CaZrS3 is one among them with an experimental bandgap of 1.90 eV. If its bandgap is tuned to lower values, it can be employed in additional photovoltaic applications, such as solar cell absorbers. In this work, the transition metal element Zr in CaZrS3 is substituted with Ti atoms in different proportions and the optoelectronic properties are investigated using Density Functional Theory (DFT). The optoelectronic calculations are all done using the DFT+U method including the spin–orbit coupling. With substitutional alloying, we successfully tuned the energy gap from 1.91 eV to 1.18 eV and the photovoltaic properties were also observed to be modified. For the substituted CaZr1xTixS3 samples, large birefringence is observed. This indicates enhancement in optical anisotropy via substitutional alloying which is significant in both linear and nonlinear optoelectronic applications like polarizers, wave plates etc.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于定制光伏特性的 Ti 取代 CaZrS3 的 DFT 研究
过渡金属钙钛矿(TMCP)因其卓越的光电特性而备受关注。CaZrS3 就是其中之一,其实验带隙为 1.90 eV。如果将其带隙调整到更低的值,就可以将其应用于更多的光电领域,如太阳能电池吸收器。在这项研究中,用不同比例的 Ti 原子取代了 CaZrS3 中的过渡金属元素 Zr,并使用密度泛函理论(DFT)研究了其光电特性。光电计算全部采用 DFT+U 方法,包括自旋轨道耦合。通过取代合金化,我们成功地将能隙从 1.91 eV 调整到了 1.18 eV,同时还观察到光电特性发生了变化。对于取代的 CaZr1-xTixS3 样品,我们观察到了较大的双折射。这表明通过置换合金增强了光学各向异性,这在偏振片、波板等线性和非线性光电应用中都非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1