{"title":"Lead II electrocardiograph-derived entropy index for autonomic function assessment in type 2 diabetes mellitus","authors":"","doi":"10.1016/j.bbe.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study was to introduce and evaluate the baroreflex entropy index (BEI), a novel tool derived from standard lead II electrocardiograph (EKG) for autonomic function (AF) assessment in type 2 diabetes mellitus (T2DM). Researchers with distinct roles (analysis and data preparation) analyzed anonymized EKG data from healthy controls and two patient groups with T2DM (well controlled and poorly controlled). BEI was compared between groups, and correlations with glycemic markers (HbA1c, fasting glucose) were investigated. Logistic regression was used to assess the association between BEI and T2DM risk. BEI showed good repeatability and differentiation between groups. Notably, it required only single-lead EKG. BEI was inversely correlated with glycemic markers, suggesting improved baroreflex regulation with better glycemic control. BEI also outperformed small-scale multiscale entropy in group discrimination. Logistic regression identified BEI as a protective factor for T2DM. BEI represents a promising tool for monitoring AF, assessing glycemic control, and potentially stratifying T2DM risk. Further validation in larger longitudinal studies and an exploration of the applicability of BEI to other diseases are warranted.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S020852162400055X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to introduce and evaluate the baroreflex entropy index (BEI), a novel tool derived from standard lead II electrocardiograph (EKG) for autonomic function (AF) assessment in type 2 diabetes mellitus (T2DM). Researchers with distinct roles (analysis and data preparation) analyzed anonymized EKG data from healthy controls and two patient groups with T2DM (well controlled and poorly controlled). BEI was compared between groups, and correlations with glycemic markers (HbA1c, fasting glucose) were investigated. Logistic regression was used to assess the association between BEI and T2DM risk. BEI showed good repeatability and differentiation between groups. Notably, it required only single-lead EKG. BEI was inversely correlated with glycemic markers, suggesting improved baroreflex regulation with better glycemic control. BEI also outperformed small-scale multiscale entropy in group discrimination. Logistic regression identified BEI as a protective factor for T2DM. BEI represents a promising tool for monitoring AF, assessing glycemic control, and potentially stratifying T2DM risk. Further validation in larger longitudinal studies and an exploration of the applicability of BEI to other diseases are warranted.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.