On energy mechanism of rate-dependent failure mode evolution in plain weave composite

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Polymer Testing Pub Date : 2024-08-16 DOI:10.1016/j.polymertesting.2024.108538
{"title":"On energy mechanism of rate-dependent failure mode evolution in plain weave composite","authors":"","doi":"10.1016/j.polymertesting.2024.108538","DOIUrl":null,"url":null,"abstract":"<div><p>The intricate failure modes and the yet unclear rate dependency of carbon fiber reinforced plain weave composite materials pose a challenge to mechanics researchers. This study establishes an energy-based evolution mechanism for the compressive failure modes of plain weave composite materials as the strain rate varies. This mechanism illustrates how the rate dependency of failure modes arises from the competitive relationship between strain potential energy and deformation kinetic energy. At low loading rates, the specimen exhibits a progressive crushing failure mode characterized by low peak stress and significant geometric deformation. As the loading strain rate increases, the energy required for this geometric deformation also increases. When the energy expenditure surpasses that needed to elevate the stress level of the specimen, it transitions to an instantaneous failure mode with high peak stress. In this mode, the specimen fractures into multiple small fragments immediately upon failure, lacking the large geometric deformations observed at lower rates. Through calculating this energy mechanism, a transition strain rate of 180 s<sup>−1</sup> was determined for both failure modes. The accuracy of this mechanism was further verified by tests conducted near the critical strain rate. The energy-based evolution mechanism for failure modes provides a simplified and concise framework for simplifying complex models of composite material failures.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002150/pdfft?md5=5c3ea24ba2c7cf921d88afe56edee3ab&pid=1-s2.0-S0142941824002150-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002150","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The intricate failure modes and the yet unclear rate dependency of carbon fiber reinforced plain weave composite materials pose a challenge to mechanics researchers. This study establishes an energy-based evolution mechanism for the compressive failure modes of plain weave composite materials as the strain rate varies. This mechanism illustrates how the rate dependency of failure modes arises from the competitive relationship between strain potential energy and deformation kinetic energy. At low loading rates, the specimen exhibits a progressive crushing failure mode characterized by low peak stress and significant geometric deformation. As the loading strain rate increases, the energy required for this geometric deformation also increases. When the energy expenditure surpasses that needed to elevate the stress level of the specimen, it transitions to an instantaneous failure mode with high peak stress. In this mode, the specimen fractures into multiple small fragments immediately upon failure, lacking the large geometric deformations observed at lower rates. Through calculating this energy mechanism, a transition strain rate of 180 s−1 was determined for both failure modes. The accuracy of this mechanism was further verified by tests conducted near the critical strain rate. The energy-based evolution mechanism for failure modes provides a simplified and concise framework for simplifying complex models of composite material failures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论平纹复合材料随速率变化的失效模式演化能量机制
碳纤维增强平纹复合材料错综复杂的失效模式和尚不明确的速率依赖性给力学研究人员带来了挑战。本研究为平织复合材料的压缩失效模式建立了一种随着应变速率变化的基于能量的演化机制。该机制说明了失效模式的速率依赖性如何产生于应变势能和变形动能之间的竞争关系。在低加载速率下,试样表现出以低峰值应力和显著几何变形为特征的渐进挤压破坏模式。随着加载应变速率的增加,这种几何变形所需的能量也随之增加。当能量消耗超过提升试样应力水平所需的能量时,试样就会过渡到峰值应力较高的瞬时失效模式。在这种模式下,试样在失效时会立即断裂成多个小碎片,缺乏在较低速率下观察到的大几何变形。通过计算这种能量机制,确定两种失效模式的过渡应变速率均为 180 s-1。在临界应变速率附近进行的测试进一步验证了这一机制的准确性。基于能量的失效模式演变机制为简化复合材料失效的复杂模型提供了一个简明扼要的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
期刊最新文献
Effect of titanate coupling agent on antioxidant property and UV blocking property of PBAT/lignin composite films Advancing thermal stability in natural ester oil-paper insulation systems via precision nanostructuring with parylene films: Experimental and molecular-level comprehensive assessment Effect of the spatial distribution of metallic fibers on the electromagnetic shielding of thermoplastic composites Towards quantitative microplastic analysis using pyrolysis-gas chromatography coupled with mass spectrometry The comparison of eight different common in vitro and ex vivo environments with in vivo conditions applying model collagen samples: Correlation possibilities and their limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1