Anthracycline-induced cardiotoxicity: An overview from cellular structural perspective

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2024-08-20 DOI:10.1016/j.biopha.2024.117312
{"title":"Anthracycline-induced cardiotoxicity: An overview from cellular structural perspective","authors":"","doi":"10.1016/j.biopha.2024.117312","DOIUrl":null,"url":null,"abstract":"<div><p>Anthracyclines are broad-spectrum anticancer drugs, but their clinical use is limited due to their severe cardiotoxicity. Anthracycline-induced cardiotoxicity (AIC) remains a significant cause of heart disease-related mortality in many cancer survivors. The underlying mechanisms of AIC have been explored over the past few decades. Reactive oxygen species and drug-induced inhibition of topoisomerase II beta are well-studied mechanisms, with mitochondria being a prominently investigated organelle. Emerging mechanisms such as ferroptosis, Ca<sup>2+</sup> overload, autophagy and inflammation mediators have been implicated in recent years. In this review, our goal is to summarize and update the roles of various mechanisms in AIC, focusing on different cellular levels and further explore promising therapeutic approaches targeting these organelles or pathways.</p></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S075333222401196X/pdfft?md5=7e81829c98ce3aec0f4b6775ed711fec&pid=1-s2.0-S075333222401196X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S075333222401196X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anthracyclines are broad-spectrum anticancer drugs, but their clinical use is limited due to their severe cardiotoxicity. Anthracycline-induced cardiotoxicity (AIC) remains a significant cause of heart disease-related mortality in many cancer survivors. The underlying mechanisms of AIC have been explored over the past few decades. Reactive oxygen species and drug-induced inhibition of topoisomerase II beta are well-studied mechanisms, with mitochondria being a prominently investigated organelle. Emerging mechanisms such as ferroptosis, Ca2+ overload, autophagy and inflammation mediators have been implicated in recent years. In this review, our goal is to summarize and update the roles of various mechanisms in AIC, focusing on different cellular levels and further explore promising therapeutic approaches targeting these organelles or pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒽环类药物诱发的心脏毒性:从细胞结构角度概述
蒽环类是广谱抗癌药物,但由于其严重的心脏毒性,其临床应用受到限制。蒽环类药物诱发的心脏毒性(AIC)仍然是许多癌症幸存者死于心脏病的一个重要原因。过去几十年来,人们一直在探索 AIC 的基本机制。活性氧和药物诱导的拓扑异构酶 II beta 抑制是研究较多的机制,线粒体是研究较多的细胞器。近年来,新出现的机制,如铁蛋白沉积、Ca2+ 超载、自噬和炎症介质也被牵涉其中。在这篇综述中,我们的目标是总结和更新各种机制在 AIC 中的作用,重点关注不同细胞水平,并进一步探讨针对这些细胞器或途径的有前景的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
The therapeutic potential of andrographolide in cancer treatment Baicalin methyl ester prevents the LPS – induced mice intestinal barrier damage in vivo and in vitro via P65/TNF-α/MLCK/ZO-1 signal pathway Therapeutic efficiency of Tamoxifen/Orlistat nanocrystals against solid ehrlich carcinoma via targeting TXNIP/HIF1-α/MMP-9/P27 and BAX/Bcl2/P53 signaling pathways Comprehensive review of perioperative factors influencing ferroptosis Podocan unraveled: Understanding its role in tumor proliferation and smooth muscle regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1