{"title":"Intrinsic multiferroicity in molybdenum oxytrihalides nanowires","authors":"Chao Yang, Yin Wang, Menghao Wu, Tai Min","doi":"10.1038/s41524-024-01368-6","DOIUrl":null,"url":null,"abstract":"<p>Low-dimensional multiferroics, which simultaneously possess at least two primary ferroic order parameters, hold great promise for post-Moore electronic devices. However, intrinsic one-dimensional (1D) multiferroics with the coexistence of ferroelectricity and ferromagnetism are still yet to be realized, which will be not only crucial for exploring the interplay between low-dimensionality and ferroelectric/ferromagnetic ordering but also significant in rendering application approaches for high density information technologies. Here, we present a theoretical prediction of intrinsic multiferroicity in 1D molybdenum oxytrihalides nanowires, especially focusing on MoOBr<sub>3</sub> nanowires which could be readily extracted from experimentally synthesized van der Waals MoOBr<sub>3</sub> bulk materials. Due to the spatial inversion symmetry spontaneously broken by Mo atoms’ displacements, MoOBr<sub>3</sub> nanowires exhibit 1D ferroelectricity with small coercive electric field and exceptional Curie temperature (~570 K). Additionally, MoOBr<sub>3</sub> nanowires also possess 1D antiferroelectric metastable states. On the other hand, both ferroelectric and antiferroelectric MoOBr<sub>3</sub> nanowires exhibit ferromagnetic ordering on account of the half-filled Mo-<i>d</i><sub><i>yz</i></sub> orbitals, a moderate tensile strain (~5%) can greatly boost the spontaneous polarization (~40%) and a mild compress strain (~−2%) may readily switch the magnetic easy axis of ferroelectric MoOBr<sub>3</sub> nanowires. Our work holds potential candidates for developing innovative devices that exploit intrinsic multiferroic properties, enabling advancements in novel electronic and spintronic applications.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"14 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01368-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Low-dimensional multiferroics, which simultaneously possess at least two primary ferroic order parameters, hold great promise for post-Moore electronic devices. However, intrinsic one-dimensional (1D) multiferroics with the coexistence of ferroelectricity and ferromagnetism are still yet to be realized, which will be not only crucial for exploring the interplay between low-dimensionality and ferroelectric/ferromagnetic ordering but also significant in rendering application approaches for high density information technologies. Here, we present a theoretical prediction of intrinsic multiferroicity in 1D molybdenum oxytrihalides nanowires, especially focusing on MoOBr3 nanowires which could be readily extracted from experimentally synthesized van der Waals MoOBr3 bulk materials. Due to the spatial inversion symmetry spontaneously broken by Mo atoms’ displacements, MoOBr3 nanowires exhibit 1D ferroelectricity with small coercive electric field and exceptional Curie temperature (~570 K). Additionally, MoOBr3 nanowires also possess 1D antiferroelectric metastable states. On the other hand, both ferroelectric and antiferroelectric MoOBr3 nanowires exhibit ferromagnetic ordering on account of the half-filled Mo-dyz orbitals, a moderate tensile strain (~5%) can greatly boost the spontaneous polarization (~40%) and a mild compress strain (~−2%) may readily switch the magnetic easy axis of ferroelectric MoOBr3 nanowires. Our work holds potential candidates for developing innovative devices that exploit intrinsic multiferroic properties, enabling advancements in novel electronic and spintronic applications.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.