Non-invasive estimation of the powder size distribution from a single speckle image

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-08-21 DOI:10.1038/s41377-024-01563-6
Qihang Zhang, Ajinkya Pandit, Zhiguang Liu, Zhen Guo, Shashank Muddu, Yi Wei, Deborah Pereg, Neda Nazemifard, Charles Papageorgiou, Yihui Yang, Wenlong Tang, Richard D. Braatz, Allan S. Myerson, George Barbastathis
{"title":"Non-invasive estimation of the powder size distribution from a single speckle image","authors":"Qihang Zhang, Ajinkya Pandit, Zhiguang Liu, Zhen Guo, Shashank Muddu, Yi Wei, Deborah Pereg, Neda Nazemifard, Charles Papageorgiou, Yihui Yang, Wenlong Tang, Richard D. Braatz, Allan S. Myerson, George Barbastathis","doi":"10.1038/s41377-024-01563-6","DOIUrl":null,"url":null,"abstract":"<p>Non-invasive characterization of powders may take one of two approaches: imaging and counting individual particles; or relying on scattered light to estimate the particle size distribution (PSD) of the <i>ensemble</i>. The former approach runs into practical difficulties, as the system must conform to the working distance and other restrictions of the imaging optics. The latter approach requires an inverse map from the speckle autocorrelation to the particle sizes. The principle relies on the pupil function determining the basic sidelobe shape, whereas the particle size spread modulates the sidelobe intensity. We recently showed that it is feasible to invert the speckle autocorrelation and obtain the PSD using a neural network, trained efficiently through a physics-informed semi-generative approach. In this work, we eliminate one of the most time-consuming steps of our previous method by engineering the pupil function. By judiciously blocking portions of the pupil, we sacrifice some photons but in return we achieve much enhanced sidelobes and, hence, higher sensitivity to the change of the size distribution. The result is a 60 × reduction in total acquisition and processing time, or 0.25 seconds per frame in our implementation. Almost real-time operation in our system is not only more appealing toward rapid industrial adoption, it also paves the way for quantitative characterization of complex spatial or temporal dynamics in drying, blending, and other chemical and pharmaceutical manufacturing processes.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01563-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive characterization of powders may take one of two approaches: imaging and counting individual particles; or relying on scattered light to estimate the particle size distribution (PSD) of the ensemble. The former approach runs into practical difficulties, as the system must conform to the working distance and other restrictions of the imaging optics. The latter approach requires an inverse map from the speckle autocorrelation to the particle sizes. The principle relies on the pupil function determining the basic sidelobe shape, whereas the particle size spread modulates the sidelobe intensity. We recently showed that it is feasible to invert the speckle autocorrelation and obtain the PSD using a neural network, trained efficiently through a physics-informed semi-generative approach. In this work, we eliminate one of the most time-consuming steps of our previous method by engineering the pupil function. By judiciously blocking portions of the pupil, we sacrifice some photons but in return we achieve much enhanced sidelobes and, hence, higher sensitivity to the change of the size distribution. The result is a 60 × reduction in total acquisition and processing time, or 0.25 seconds per frame in our implementation. Almost real-time operation in our system is not only more appealing toward rapid industrial adoption, it also paves the way for quantitative characterization of complex spatial or temporal dynamics in drying, blending, and other chemical and pharmaceutical manufacturing processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从单幅斑点图像无损估算粉末粒度分布
粉末的非侵入式表征可采用以下两种方法之一:对单个颗粒进行成像和计数;或依靠散射光估算集合体的粒度分布(PSD)。前一种方法会遇到实际困难,因为系统必须符合成像光学系统的工作距离和其他限制。后一种方法需要从斑点自相关到粒度的反映射。其原理是由瞳孔函数决定基本侧影形状,而粒度分布则调节侧影强度。我们最近的研究表明,使用神经网络反转斑点自相关并获得 PSD 是可行的,该网络通过物理信息半生成方法进行了有效训练。在这项工作中,我们通过设计瞳孔函数,消除了之前方法中最耗时的步骤之一。通过明智地遮挡部分瞳孔,我们牺牲了一些光子,但换来的是更大的侧晃,从而提高了对尺寸分布变化的灵敏度。因此,总的采集和处理时间减少了 60 倍,在我们的实施过程中,每帧减少了 0.25 秒。在我们的系统中,几乎实时的操作不仅对快速的工业应用更有吸引力,而且还为干燥、混合和其他化学与制药生产过程中复杂的空间或时间动态的定量表征铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Ultra-fast light-field microscopy with event detection Quantum sensing with optically accessible spin defects in van der Waals layered materials Polaritons light up future displays Color-conversion displays: current status and future outlook Dynamic synthetic-scanning photoacoustic tracking monitors hepatic and renal clearance pathway of exogeneous probes in vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1