One pot multi-component synthesis of novel functionalized pyrazolo furan-2(5H)-one derivatives: in vitro, DFT, molecular docking, and pharmacophore studies, as coronavirus inhibitors.
Doaa M Elsisi, Ashraf M Mohamed, Mohamed G Seadawy, Aya Ahmed, Eman S Abou-Amra
{"title":"One pot multi-component synthesis of novel functionalized pyrazolo furan-2(5H)-one derivatives: in vitro, DFT, molecular docking, and pharmacophore studies, as coronavirus inhibitors.","authors":"Doaa M Elsisi, Ashraf M Mohamed, Mohamed G Seadawy, Aya Ahmed, Eman S Abou-Amra","doi":"10.1007/s11030-024-10885-x","DOIUrl":null,"url":null,"abstract":"<p><p>New and facile one-pot approach for the syntheses of 12 derivatives of 3,5-disubstituted furane-2(5H)-one (4a-l) from easily available starting materials. The suitable synthetic procedures for selective synthesis of diverse furane-2(5H)-one derivatives were achieved via multi-component condensation of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (1), pyruvic acid and different aromatic amines 3a-l in good to high yields and short reaction time by refluxing in acetic acid as well as obtained by another method (method B) when unsaturated arylidene pyruvic acid 6 was refluxed with different aromatic amines in acetic acid but in smaller yield than method A. Structures of the prepared compounds were elucidated by elemental analysis and spectral data as mass, IR, <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectroscopy. The antiviral efficacy of compounds 4a-l against SARS-CoV-2 was evaluated using the MTT assay. It was demonstrated that synthetic compounds 4c-e and 4h-j have a potent and selective inhibitory effect on SARS-CoV-2, a strain obtained from Egyptian patients. We utilized density-functional theory (DFT) analyses to deduce the molecular structures and topologies of the more energetic molecules. Molecular docking studies were performed against the SARS-CoV-2 main protease (PDB ID: 6Y84) and the SARS-CoV-2 Nsp9 RNA binding protein (PDB ID: 6W4B) to study the binding mechanism, non-bonding interactions, and binding affinity. Lastly, a hypothetical pharmacophore model was constructed by applying the Molecular Operating Environment (MOE) tool and eleven pharmaceuticals with proven antiviral activity.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10885-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
New and facile one-pot approach for the syntheses of 12 derivatives of 3,5-disubstituted furane-2(5H)-one (4a-l) from easily available starting materials. The suitable synthetic procedures for selective synthesis of diverse furane-2(5H)-one derivatives were achieved via multi-component condensation of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (1), pyruvic acid and different aromatic amines 3a-l in good to high yields and short reaction time by refluxing in acetic acid as well as obtained by another method (method B) when unsaturated arylidene pyruvic acid 6 was refluxed with different aromatic amines in acetic acid but in smaller yield than method A. Structures of the prepared compounds were elucidated by elemental analysis and spectral data as mass, IR, 1H-NMR and 13C-NMR spectroscopy. The antiviral efficacy of compounds 4a-l against SARS-CoV-2 was evaluated using the MTT assay. It was demonstrated that synthetic compounds 4c-e and 4h-j have a potent and selective inhibitory effect on SARS-CoV-2, a strain obtained from Egyptian patients. We utilized density-functional theory (DFT) analyses to deduce the molecular structures and topologies of the more energetic molecules. Molecular docking studies were performed against the SARS-CoV-2 main protease (PDB ID: 6Y84) and the SARS-CoV-2 Nsp9 RNA binding protein (PDB ID: 6W4B) to study the binding mechanism, non-bonding interactions, and binding affinity. Lastly, a hypothetical pharmacophore model was constructed by applying the Molecular Operating Environment (MOE) tool and eleven pharmaceuticals with proven antiviral activity.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;