首页 > 最新文献

Molecular Diversity最新文献

英文 中文
Targeting cyclin-dependent kinase 11: a computational approach for natural anti-cancer compound discovery.
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-23 DOI: 10.1007/s11030-025-11107-8
Suruchi Bhambri, Prakash C Jha

Cancer, a leading global cause of death, presents considerable treatment challenges due to resistance to conventional therapies like chemotherapy and radiotherapy. Cyclin-dependent kinase 11 (CDK11), which plays a pivotal role in cell cycle regulation and transcription, is overexpressed in various cancers and is linked to poor prognosis. This study focused on identifying potential inhibitors of CDK11 using computational drug discovery methods. Techniques such as pharmacophore modeling, virtual screening, molecular docking, ADMET predictions, molecular dynamics simulations, and binding free energy analysis were applied to screen a large natural product database. Three pharmacophore models were validated, leading to the identification of several promising compounds with stronger binding affinities than the reference inhibitor. ADMET profiling indicated favorable drug-like properties, while molecular dynamics simulations confirmed the stability and favorable interactions of top candidates with CDK11. Binding free energy calculations further revealed that UNPD29888 exhibited the strongest binding affinity. In conclusion, the identified compound shows potential as a CDK11 inhibitor based on computational predictions, suggesting their future application in cancer treatment by targeting CDK11. These computational findings encourage further experimental validation as anti-cancer agents.

{"title":"Targeting cyclin-dependent kinase 11: a computational approach for natural anti-cancer compound discovery.","authors":"Suruchi Bhambri, Prakash C Jha","doi":"10.1007/s11030-025-11107-8","DOIUrl":"https://doi.org/10.1007/s11030-025-11107-8","url":null,"abstract":"<p><p>Cancer, a leading global cause of death, presents considerable treatment challenges due to resistance to conventional therapies like chemotherapy and radiotherapy. Cyclin-dependent kinase 11 (CDK11), which plays a pivotal role in cell cycle regulation and transcription, is overexpressed in various cancers and is linked to poor prognosis. This study focused on identifying potential inhibitors of CDK11 using computational drug discovery methods. Techniques such as pharmacophore modeling, virtual screening, molecular docking, ADMET predictions, molecular dynamics simulations, and binding free energy analysis were applied to screen a large natural product database. Three pharmacophore models were validated, leading to the identification of several promising compounds with stronger binding affinities than the reference inhibitor. ADMET profiling indicated favorable drug-like properties, while molecular dynamics simulations confirmed the stability and favorable interactions of top candidates with CDK11. Binding free energy calculations further revealed that UNPD29888 exhibited the strongest binding affinity. In conclusion, the identified compound shows potential as a CDK11 inhibitor based on computational predictions, suggesting their future application in cancer treatment by targeting CDK11. These computational findings encourage further experimental validation as anti-cancer agents.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of selective ROCK2 inhibitors with free radical scavenging ability for the treatment of gouty arthritis.
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-23 DOI: 10.1007/s11030-024-11054-w
Ruolin Cao, Chuqiao Song, Zhe Wang, Bingqing Lv, Wei Xiao, Guoliang Chen, Xuefei Bao

ROCK inhibitors can inhibit IL-1β and NLRP3, and their therapeutic potential for osteoarthritis and rheumatoid arthritis has been confirmed, but their impact on gouty arthritis has not been reported yet. By hybridization the structure of Edaravone, a series of ROCK inhibitors with pyrazolone scaffold were designed and synthesized. RM-04 has acceptable selective ROCK2 inhibitory activity with an IC50 of 4.62 µM, and its IC50 values for scavenging DPPH and ABTS•+ are 16.72 µM and 23.15 µM, respectively, which is equivalent to that of Edaravone. Furthermore, RM-04 exhibits good pharmacokinetic properties and good safety in vivo. Meanwhile, in sodium urate-induced acute gout model, RM-04 at a dose of 5 mg/kg exhibited the alleviating effect approximately equivalent to that of Celecoxib, indicating that ROCKs inhibitors with antioxidation activity could reduce the damage caused by gouty arthritis.

{"title":"Discovery of selective ROCK2 inhibitors with free radical scavenging ability for the treatment of gouty arthritis.","authors":"Ruolin Cao, Chuqiao Song, Zhe Wang, Bingqing Lv, Wei Xiao, Guoliang Chen, Xuefei Bao","doi":"10.1007/s11030-024-11054-w","DOIUrl":"https://doi.org/10.1007/s11030-024-11054-w","url":null,"abstract":"<p><p>ROCK inhibitors can inhibit IL-1β and NLRP3, and their therapeutic potential for osteoarthritis and rheumatoid arthritis has been confirmed, but their impact on gouty arthritis has not been reported yet. By hybridization the structure of Edaravone, a series of ROCK inhibitors with pyrazolone scaffold were designed and synthesized. RM-04 has acceptable selective ROCK2 inhibitory activity with an IC<sub>50</sub> of 4.62 µM, and its IC<sub>50</sub> values for scavenging DPPH<sup>•</sup> and ABTS<sup>•+</sup> are 16.72 µM and 23.15 µM, respectively, which is equivalent to that of Edaravone. Furthermore, RM-04 exhibits good pharmacokinetic properties and good safety in vivo. Meanwhile, in sodium urate-induced acute gout model, RM-04 at a dose of 5 mg/kg exhibited the alleviating effect approximately equivalent to that of Celecoxib, indicating that ROCKs inhibitors with antioxidation activity could reduce the damage caused by gouty arthritis.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-TMV activity based flavonol derivatives containing piperazine sulfonyl: Design, synthesis and mechanism study. 基于抗tmv活性的哌嗪磺酰类黄酮醇衍生物的设计、合成及机理研究。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-22 DOI: 10.1007/s11030-025-11109-6
Zhiling Sun, Wei Zeng, Yujiao Qiu, Yuzhi Hu, Qing Zhou, Chunmei Hu, Yuhong Wang, Wei Xue

A series of flavonoid derivatives containing piperazine sulfonate were designed and synthesized. The results of antiviral experiments in vivo showed that some target compounds had good inhibitory effect on tobacco mosaic virus (TMV). The EC50 values of S15 and S19 curative activity were 174.5 and 110.4 μg/mL, respectively, which were better than 253.7 μg/mL of Ningnanmycin (NNM). The EC50 values of S4 and S19 protection activity were 140.3 and 116.1 μg/mL, respectively, better than that of NNM (247.1 μg/mL). Microscale thermophoresis (MST) and molecular docking experiments showed that S19 had a good molecular binding force with TMV. Transmission electron microscopy (TEM) results show that S19 can fracture TMV particles and affect self-assembly. S19 treatment had almost no effect on the growth of seeds and seedlings, and can change the content of chlorophyll malondialdehyde (MDA) and superoxide dismutase (SOD) in tobacco to a certain extent, and improve the disease resistance of tobacco.

设计并合成了一系列含哌嗪磺酸盐的类黄酮衍生物。体内抗病毒实验结果表明,部分靶化合物对烟草花叶病毒(TMV)有较好的抑制作用。S15和S19的EC50值分别为174.5和110.4 μg/mL,优于宁南霉素(NNM)的253.7 μg/mL。S4和S19的EC50值分别为140.3和116.1 μg/mL,优于NNM (247.1 μg/mL)。微尺度热泳(MST)和分子对接实验表明,S19与TMV具有良好的分子结束力。透射电镜(TEM)结果表明,S19可以破坏TMV颗粒,影响其自组装。S19处理对种子和幼苗的生长几乎没有影响,但能在一定程度上改变烟草叶绿素丙二醛(MDA)和超氧化物歧化酶(SOD)的含量,提高烟草的抗病性。
{"title":"Anti-TMV activity based flavonol derivatives containing piperazine sulfonyl: Design, synthesis and mechanism study.","authors":"Zhiling Sun, Wei Zeng, Yujiao Qiu, Yuzhi Hu, Qing Zhou, Chunmei Hu, Yuhong Wang, Wei Xue","doi":"10.1007/s11030-025-11109-6","DOIUrl":"https://doi.org/10.1007/s11030-025-11109-6","url":null,"abstract":"<p><p>A series of flavonoid derivatives containing piperazine sulfonate were designed and synthesized. The results of antiviral experiments in vivo showed that some target compounds had good inhibitory effect on tobacco mosaic virus (TMV). The EC<sub>50</sub> values of S15 and S19 curative activity were 174.5 and 110.4 μg/mL, respectively, which were better than 253.7 μg/mL of Ningnanmycin (NNM). The EC<sub>50</sub> values of S4 and S19 protection activity were 140.3 and 116.1 μg/mL, respectively, better than that of NNM (247.1 μg/mL). Microscale thermophoresis (MST) and molecular docking experiments showed that S19 had a good molecular binding force with TMV. Transmission electron microscopy (TEM) results show that S19 can fracture TMV particles and affect self-assembly. S19 treatment had almost no effect on the growth of seeds and seedlings, and can change the content of chlorophyll malondialdehyde (MDA) and superoxide dismutase (SOD) in tobacco to a certain extent, and improve the disease resistance of tobacco.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy. 通过机器学习和计算机方法优化激酶和PARP抑制剂组合用于靶向脑癌治疗。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-22 DOI: 10.1007/s11030-025-11114-9
Alireza Poustforoosh

The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells. Some decision tree-based models were used for this purpose. The results were further evaluated using molecular docking and molecular dynamics (MD) simulation. The possibility of the hit drug combinations for crossing the Blood-brain barrier (BBB) was also examined. Based on the obtained results, the combination of niraparib, as the PARP inhibitor, and lapatinib, as the kinase inhibitor, exhibited more considerable outcomes with a remarkable model performance (accuracy of 0.915) and prediction confidence of 0.92. The protein tweety homolog 3 and BTB/POZ domain-containing protein 2 are the main targets of niraparib and lapatinib with - 10.2 and - 8.5 scores, respectively. Due to the outcomes, this drug combination can use the CAT1 transporter on the BBB surface and effectively cross the BBB. Based on the obtained results, niraparib-lapatinib can be a promising drug combination candidate for brain cancer treatment. This combination is worth to be examined by experimental investigation in vitro and in vivo.

这种药物组合是治疗癌症的一种有吸引力的方法。PARP和激酶抑制剂近年来被研究用于抗癌,但它们的联合应用尚未得到全面的研究。在这项研究中,我们使用各种药物组合数据库来构建针对脑癌细胞的药物组合的ML模型。为此使用了一些基于决策树的模型。利用分子对接和分子动力学(MD)模拟对结果进行了进一步评价。同时还研究了通过血脑屏障(BBB)的药物组合的可能性。结果表明,作为PARP抑制剂的尼拉帕尼与作为激酶抑制剂的拉帕替尼联合使用的结果更为可观,模型性能显著(准确率为0.915),预测置信度为0.92。蛋白质tweety同源物3和含有BTB/POZ结构域的蛋白2是尼拉帕尼和拉帕替尼的主要靶点,分别为- 10.2和- 8.5分。由于结果,该药物组合可以利用血脑屏障表面的CAT1转运体并有效地穿过血脑屏障。基于所获得的结果,尼拉帕替尼可能是一种有前途的脑癌治疗药物组合候选。该组合值得进行体内外实验研究。
{"title":"Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy.","authors":"Alireza Poustforoosh","doi":"10.1007/s11030-025-11114-9","DOIUrl":"https://doi.org/10.1007/s11030-025-11114-9","url":null,"abstract":"<p><p>The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells. Some decision tree-based models were used for this purpose. The results were further evaluated using molecular docking and molecular dynamics (MD) simulation. The possibility of the hit drug combinations for crossing the Blood-brain barrier (BBB) was also examined. Based on the obtained results, the combination of niraparib, as the PARP inhibitor, and lapatinib, as the kinase inhibitor, exhibited more considerable outcomes with a remarkable model performance (accuracy of 0.915) and prediction confidence of 0.92. The protein tweety homolog 3 and BTB/POZ domain-containing protein 2 are the main targets of niraparib and lapatinib with - 10.2 and - 8.5 scores, respectively. Due to the outcomes, this drug combination can use the CAT1 transporter on the BBB surface and effectively cross the BBB. Based on the obtained results, niraparib-lapatinib can be a promising drug combination candidate for brain cancer treatment. This combination is worth to be examined by experimental investigation in vitro and in vivo.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apigenin-mediated MARK4 inhibition: a novel approach in advancing Alzheimer's disease therapeutics. 芹菜素介导的MARK4抑制:推进阿尔茨海默病治疗的新途径
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-22 DOI: 10.1007/s11030-025-11104-x
Afzal Hussain, Deeba Shamim Jairajpuri, Saleha Anwar, Arunabh Choudhury, Mohammed F Hawwal, Anam Firdous, Mohamed F Alajmi, Md Imtaiyaz Hassan

Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role. In this study, we focus on Microtubule Affinity-Regulating Kinase 4 (MARK4), a key enzyme implicated in tauopathies associated with AD, as well as in cancer progression. Through in silico analysis, we explore the interaction between apigenin and MARK4, revealing significant structural changes within the kinase domain upon ligand binding. These computational findings were confirmed via experimental assays using purified recombinant MARK4, where apigenin demonstrated potent inhibition with an IC50 value of 2.39 µM. Fluorescence binding assays further confirmed a strong binding affinity (Ka = 108 M-1), indicating that apigenin efficiently occupies the MARK4 active site, thereby suppressing its enzymatic activity. These results position apigenin as a potent inhibitor of MARK4, offering a dual therapeutic advantage-both as an anti-cancer agent and as a neuroprotective compound for the potential treatment of AD. This study opens new avenues for the development of apigenin-based therapeutics targeting kinase dysregulation in cancer and neurodegeneration.

芹菜素是一种具有显著抗癌特性的膳食类黄酮,已成为治疗神经退行性疾病,特别是阿尔茨海默病(AD)的有希望的候选者。芹菜素在癌症中调节关键分子通路的能力被广泛研究,它还通过减少神经炎症、保护神经元免受氧化应激、增强神经元存活和突触可塑性等发挥神经保护作用。这种双重功能使芹菜素成为像阿尔茨海默病这样的疾病的一个有趣的治疗选择,其中激酶失调起着核心作用。在这项研究中,我们重点研究了微管亲和调节激酶4 (MARK4),这是一种与AD相关的tau病变以及癌症进展有关的关键酶。通过硅分析,我们探索了芹菜素和MARK4之间的相互作用,揭示了配体结合后激酶结构域的显著结构变化。这些计算结果通过纯化重组MARK4的实验分析得到证实,其中芹菜素表现出有效的抑制作用,IC50值为2.39µM。荧光结合实验进一步证实了强的结合亲和力(Ka = 108 M-1),表明芹菜素有效地占据了MARK4活性位点,从而抑制了其酶活性。这些结果表明,芹菜素是一种有效的MARK4抑制剂,具有双重治疗优势——既可以作为抗癌药物,又可以作为神经保护化合物,用于潜在的AD治疗。本研究为开发以芹菜素为基础的靶向癌症和神经变性中激酶失调的治疗方法开辟了新的途径。
{"title":"Apigenin-mediated MARK4 inhibition: a novel approach in advancing Alzheimer's disease therapeutics.","authors":"Afzal Hussain, Deeba Shamim Jairajpuri, Saleha Anwar, Arunabh Choudhury, Mohammed F Hawwal, Anam Firdous, Mohamed F Alajmi, Md Imtaiyaz Hassan","doi":"10.1007/s11030-025-11104-x","DOIUrl":"https://doi.org/10.1007/s11030-025-11104-x","url":null,"abstract":"<p><p>Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role. In this study, we focus on Microtubule Affinity-Regulating Kinase 4 (MARK4), a key enzyme implicated in tauopathies associated with AD, as well as in cancer progression. Through in silico analysis, we explore the interaction between apigenin and MARK4, revealing significant structural changes within the kinase domain upon ligand binding. These computational findings were confirmed via experimental assays using purified recombinant MARK4, where apigenin demonstrated potent inhibition with an IC<sub>50</sub> value of 2.39 µM. Fluorescence binding assays further confirmed a strong binding affinity (Ka = 10<sup>8</sup> M<sup>-1</sup>), indicating that apigenin efficiently occupies the MARK4 active site, thereby suppressing its enzymatic activity. These results position apigenin as a potent inhibitor of MARK4, offering a dual therapeutic advantage-both as an anti-cancer agent and as a neuroprotective compound for the potential treatment of AD. This study opens new avenues for the development of apigenin-based therapeutics targeting kinase dysregulation in cancer and neurodegeneration.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of methoxyflavones as dengue NS2B-NS3 protease inhibitors: an in silico and in vitro studies. 甲氧基黄酮作为登革热NS2B-NS3蛋白酶抑制剂的评价:计算机和体外研究。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-22 DOI: 10.1007/s11030-024-10899-5
Nur Farhana Mustafa, Kian-Kai Cheng, Siti Aisyah Razali, Habibah A Wahab, Nurul Hanim Salin, Iffah Izzati Zakaria, Muhammad Helmi Nadri

Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study. Due to methoxy group substitution, methoxyflavones are more bioavailable and metabolically stable than hydroxylated flavones. To date, research on the anti-dengue activity of methoxyflavones is limited. Hence, this work aims to determine the inhibitory activity of methoxyflavones against the dengue NS2B-NS3. Methoxyflavones derivatives were screened using molecular docking. The result showed a strong binding interaction of compound 1 and compound 2 with NS2B-NS3 protease. Both compounds exhibited comparable binding energy as the reference compound, quercetin, with values lower than - 8.1 kcal/mol. Molecular dynamics simulation using GROMACS revealed the stability and stiffness of the complexes over a 100 ns time scale. In addition, an in vitro assay for NS2B-NS3 protease inhibition revealed inhibitory effects of compounds 1 and 2 with IC50 values of 316.80 µM and 463.30 µM, respectively. The ADMET analyses showed favorable pharmacokinetics profiles that comply with Lipinski's Rule of Five. Collectively, our findings suggest that compounds 1 and 2 inhibit dengue NS2B-NS3 activity. These findings hold promise of methoxyflavones as starting compounds for potential dengue treatment, highlighting the need for further investigation.

登革热是由埃及伊蚊传播的最普遍的病毒之一。目前,没有专门的药物可用于治疗登革热。NS2B-NS3蛋白酶在翻译后加工过程中起着至关重要的作用,是本研究的关键靶点。由于甲氧基取代,甲氧基黄酮比羟基黄酮具有更高的生物利用度和代谢稳定性。迄今为止,对甲氧基黄酮抗登革热活性的研究有限。因此,本研究旨在确定甲氧基黄酮对登革热NS2B-NS3的抑制活性。利用分子对接技术筛选甲氧基黄酮衍生物。结果表明,化合物1和化合物2与NS2B-NS3蛋白酶具有较强的结合相互作用。两种化合物的结合能均低于- 8.1 kcal/mol,与参比化合物槲皮素的结合能相当。利用GROMACS进行分子动力学模拟,揭示了配合物在100 ns时间尺度上的稳定性和刚度。此外,体外NS2B-NS3蛋白酶抑制实验显示,化合物1和2的IC50值分别为316.80µM和463.30µM。ADMET分析显示良好的药代动力学符合利平斯基的五法则。总之,我们的研究结果表明,化合物1和2抑制登革热NS2B-NS3活性。这些发现为甲氧基黄酮作为潜在登革热治疗的起始化合物带来了希望,强调了进一步研究的必要性。
{"title":"Evaluation of methoxyflavones as dengue NS2B-NS3 protease inhibitors: an in silico and in vitro studies.","authors":"Nur Farhana Mustafa, Kian-Kai Cheng, Siti Aisyah Razali, Habibah A Wahab, Nurul Hanim Salin, Iffah Izzati Zakaria, Muhammad Helmi Nadri","doi":"10.1007/s11030-024-10899-5","DOIUrl":"https://doi.org/10.1007/s11030-024-10899-5","url":null,"abstract":"<p><p>Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study. Due to methoxy group substitution, methoxyflavones are more bioavailable and metabolically stable than hydroxylated flavones. To date, research on the anti-dengue activity of methoxyflavones is limited. Hence, this work aims to determine the inhibitory activity of methoxyflavones against the dengue NS2B-NS3. Methoxyflavones derivatives were screened using molecular docking. The result showed a strong binding interaction of compound 1 and compound 2 with NS2B-NS3 protease. Both compounds exhibited comparable binding energy as the reference compound, quercetin, with values lower than - 8.1 kcal/mol. Molecular dynamics simulation using GROMACS revealed the stability and stiffness of the complexes over a 100 ns time scale. In addition, an in vitro assay for NS2B-NS3 protease inhibition revealed inhibitory effects of compounds 1 and 2 with IC<sub>50</sub> values of 316.80 µM and 463.30 µM, respectively. The ADMET analyses showed favorable pharmacokinetics profiles that comply with Lipinski's Rule of Five. Collectively, our findings suggest that compounds 1 and 2 inhibit dengue NS2B-NS3 activity. These findings hold promise of methoxyflavones as starting compounds for potential dengue treatment, highlighting the need for further investigation.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual inhibition of AChE and MAO-B in Alzheimer's disease: machine learning approaches and model interpretations. AChE和MAO-B在阿尔茨海默病中的双重抑制:机器学习方法和模型解释。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-21 DOI: 10.1007/s11030-024-11061-x
Qinghe Hou, Yan Li

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Given the multifactorial pathophysiology of AD, monotargeted agents can only alleviate symptoms but not cure AD. Acetylcholinesterase (AChE) and Monoamine oxidase B (MAO-B) are two key targets in the treatment of AD, molecules that inhibiting both targets are considered promising avenue to develop more effective AD therapies. In the present work, a dual inhibition dataset containing 449 molecules was established, based on which five machine learning algorithms (KNN, SVM, RF, GBDT, and LGBM) four fingerprints (MACCS, ECFP4, RDKitFP, PubChemFP) and DRAGON descriptors were combined to develop 25 classification models in which GBDT paired with ECFP4 and RF paired with PubchemFP achieved the same best performance across multiple metrics (Accuracy = 0.92, F1 Score = 0.94, MCC = 0.81). Moreover, based on the curated bioactivity datasets of AChE and MAO-B, regression models were developed to predict pIC50 values. For the AChE inhibition task, GBDT demonstrated the best performance (RMSE = 0.683, MAE = 0.500, R2 = 0.721). The SVM algorithm emerged as the most effective for MAO-B inhibition (RMSE = 0.668, MAE = 0.507, R2 = 0.675). The SHAP algorithm was used to interpret the optimal models, identifying and analyzing the key substructures and properties for both dual-target and single-target inhibitors. Moreover, molecules docking process provided potential mechanism and Structure-Activity Relationships (SAR) of dual-target inhibition further.

阿尔茨海默病(AD)是最常见的神经退行性疾病之一。鉴于阿尔茨海默病的多因素病理生理,单靶向药物只能缓解症状而不能治愈阿尔茨海默病。乙酰胆碱酯酶(AChE)和单胺氧化酶B (MAO-B)是治疗AD的两个关键靶点,抑制这两个靶点的分子被认为是开发更有效的AD治疗方法的有希望的途径。本文建立了包含449个分子的双抑制数据集,在此基础上,结合5种机器学习算法(KNN、SVM、RF、GBDT和LGBM)、4种指纹(MACCS、ECFP4、RDKitFP、PubChemFP)和DRAGON描述符,建立了25个分类模型,其中GBDT与ECFP4配对、RF与PubChemFP配对在多个指标上取得了相同的最佳性能(Accuracy = 0.92, F1 Score = 0.94, MCC = 0.81)。此外,基于整理的AChE和MAO-B生物活性数据集,建立回归模型预测pIC50值。对于AChE抑制任务,GBDT表现最好(RMSE = 0.683, MAE = 0.500, R2 = 0.721)。SVM算法对MAO-B的抑制效果最好(RMSE = 0.668, MAE = 0.507, R2 = 0.675)。利用SHAP算法对优化模型进行解释,识别并分析了双靶点和单靶点抑制剂的关键子结构和性能。此外,分子对接过程进一步提供了双靶点抑制的潜在机制和构效关系。
{"title":"Dual inhibition of AChE and MAO-B in Alzheimer's disease: machine learning approaches and model interpretations.","authors":"Qinghe Hou, Yan Li","doi":"10.1007/s11030-024-11061-x","DOIUrl":"https://doi.org/10.1007/s11030-024-11061-x","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Given the multifactorial pathophysiology of AD, monotargeted agents can only alleviate symptoms but not cure AD. Acetylcholinesterase (AChE) and Monoamine oxidase B (MAO-B) are two key targets in the treatment of AD, molecules that inhibiting both targets are considered promising avenue to develop more effective AD therapies. In the present work, a dual inhibition dataset containing 449 molecules was established, based on which five machine learning algorithms (KNN, SVM, RF, GBDT, and LGBM) four fingerprints (MACCS, ECFP4, RDKitFP, PubChemFP) and DRAGON descriptors were combined to develop 25 classification models in which GBDT paired with ECFP4 and RF paired with PubchemFP achieved the same best performance across multiple metrics (Accuracy = 0.92, F1 Score = 0.94, MCC = 0.81). Moreover, based on the curated bioactivity datasets of AChE and MAO-B, regression models were developed to predict pIC<sub>50</sub> values. For the AChE inhibition task, GBDT demonstrated the best performance (RMSE = 0.683, MAE = 0.500, R<sup>2</sup> = 0.721). The SVM algorithm emerged as the most effective for MAO-B inhibition (RMSE = 0.668, MAE = 0.507, R<sup>2</sup> = 0.675). The SHAP algorithm was used to interpret the optimal models, identifying and analyzing the key substructures and properties for both dual-target and single-target inhibitors. Moreover, molecules docking process provided potential mechanism and Structure-Activity Relationships (SAR) of dual-target inhibition further.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-sized heterogeneous photocatalyst Fe3O4@V/TiO2-catalyzed synthesis and antimycobacterial evaluation of 2-substituted benzimidazoles. 纳米非均相光催化剂Fe3O4@V/ tio2催化2-取代苯并咪唑的合成及抑菌性评价。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-21 DOI: 10.1007/s11030-024-11085-3
Lijian Bao, Xiaodong Chen, Yanli Li, Guangyuan Zhu, Jingjun Wang, Mingyue Chen, Xingyu Bian, Qiang Gu, Yumin Zhang, Feng Lin

The 2-substituted benzimidazole has emerged as a promising heterocyclic compound in the field of drug design. In pursuit of more sustainable photocatalysts for 2-substituted benzimidazole synthesis, the method for coating Fe3O4 with V-doped TiO2 was presented. On the base of characterizing composition, morphology, and properties, the prepared nano-sized Fe3O4@V/TiO2 composites were used as a heterogeneous photocatalyst to catalyze the synthesis of 2-substituted benzimidazoles under light. The photocatalyst Fe3O4@V/TiO2 composites showed the enhanced photocatalytic activity compared to no V-doped Fe3O4@TiO2, being able to yield various 2-substituted benzimidazoles in moderate to good yield with recyclability and stability. A possible photocatalysis mechanism was investigated. It was evident that holes, singlet oxygen, and ·O2̄ radical played important roles in the synthesis of 2-substituted benzimidazole. Moreover, some of the obtained products were demonstrated excellent antibacterial activity.

2取代苯并咪唑是一种很有发展前途的杂环化合物。为了寻找更具可持续性的2-取代苯并咪唑合成光催化剂,提出了用v掺杂TiO2包覆Fe3O4的方法。在表征其组成、形貌和性能的基础上,将制备的纳米级Fe3O4@V/TiO2复合材料作为非均相光催化剂,在光催化下合成2-取代苯并咪唑。光催化剂Fe3O4@V/TiO2复合材料的光催化活性比不掺v的Fe3O4@TiO2增强,能够以中高收率生产各种2-取代苯并咪唑,并且具有可回收性和稳定性。探讨了一种可能的光催化机理。结果表明,空穴、单线态氧和·O2·自由基在2-取代苯并咪唑的合成中起着重要的作用。此外,部分所得产物具有良好的抗菌活性。
{"title":"Nano-sized heterogeneous photocatalyst Fe<sub>3</sub>O<sub>4</sub>@V/TiO<sub>2</sub>-catalyzed synthesis and antimycobacterial evaluation of 2-substituted benzimidazoles.","authors":"Lijian Bao, Xiaodong Chen, Yanli Li, Guangyuan Zhu, Jingjun Wang, Mingyue Chen, Xingyu Bian, Qiang Gu, Yumin Zhang, Feng Lin","doi":"10.1007/s11030-024-11085-3","DOIUrl":"https://doi.org/10.1007/s11030-024-11085-3","url":null,"abstract":"<p><p>The 2-substituted benzimidazole has emerged as a promising heterocyclic compound in the field of drug design. In pursuit of more sustainable photocatalysts for 2-substituted benzimidazole synthesis, the method for coating Fe<sub>3</sub>O<sub>4</sub> with V-doped TiO<sub>2</sub> was presented. On the base of characterizing composition, morphology, and properties, the prepared nano-sized Fe<sub>3</sub>O<sub>4</sub>@V/TiO<sub>2</sub> composites were used as a heterogeneous photocatalyst to catalyze the synthesis of 2-substituted benzimidazoles under light. The photocatalyst Fe<sub>3</sub>O<sub>4</sub>@V/TiO<sub>2</sub> composites showed the enhanced photocatalytic activity compared to no V-doped Fe<sub>3</sub>O<sub>4</sub>@TiO<sub>2</sub>, being able to yield various 2-substituted benzimidazoles in moderate to good yield with recyclability and stability. A possible photocatalysis mechanism was investigated. It was evident that holes, singlet oxygen, and ·O<sub>2</sub>̄ radical played important roles in the synthesis of 2-substituted benzimidazole. Moreover, some of the obtained products were demonstrated excellent antibacterial activity.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular modeling aided design, synthesis and biological evaluation of quinazoline derivatives for the treatment of human cancer. 分子模拟辅助设计、合成及治疗人类癌症的喹唑啉衍生物的生物学评价。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-20 DOI: 10.1007/s11030-025-11111-y
Cai-Shi Liu, Jin-Peng Tong, Ze-Yu Fang, Xiao-Meng Guo, Ting-Ting Shi, Shou-Rong Liu, Juan Sun

The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using 1H NMR, 13C NMR, and HRMS techniques. Through computer-assisted screening and antitumor activity tests, the majority of the compounds demonstrated significant inhibitory effects against various cancer cell lines. Notably, compound 3m exhibited remarkable anticancer activity by inducing G2/M phase cell cycle arrest, apoptosis, as confirmed by western blot assay, cellular fluorescence staining, and transcriptomics testing. Docking simulation was performed to determine the probable binding conformation of compound 3m within the active sites of FAK and PLK1. This compound emerged as a highly promising lead compound during our screening process, displaying high efficiency.

喹唑啉支架作为一个基本框架,显示出强大的抗肿瘤活性。利用基于药物载体的支架跳跃原理,我们成功合成了一系列含有喹唑啉支架的FAK/PLK1抑制剂。用1H NMR、13C NMR和HRMS对合成的化合物进行了表征。通过计算机辅助筛选和抗肿瘤活性试验,大多数化合物对多种肿瘤细胞系表现出明显的抑制作用。值得注意的是,化合物3m通过诱导G2/M期细胞周期阻滞和细胞凋亡表现出显著的抗癌活性,这一点经western blot、细胞荧光染色和转录组学测试证实。通过对接模拟确定化合物3m在FAK和PLK1活性位点内可能的结合构象。在我们的筛选过程中,该化合物显示出很高的效率,是一个很有前途的先导化合物。
{"title":"Molecular modeling aided design, synthesis and biological evaluation of quinazoline derivatives for the treatment of human cancer.","authors":"Cai-Shi Liu, Jin-Peng Tong, Ze-Yu Fang, Xiao-Meng Guo, Ting-Ting Shi, Shou-Rong Liu, Juan Sun","doi":"10.1007/s11030-025-11111-y","DOIUrl":"https://doi.org/10.1007/s11030-025-11111-y","url":null,"abstract":"<p><p>The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using <sup>1</sup>H NMR, <sup>13</sup>C NMR, and HRMS techniques. Through computer-assisted screening and antitumor activity tests, the majority of the compounds demonstrated significant inhibitory effects against various cancer cell lines. Notably, compound 3m exhibited remarkable anticancer activity by inducing G2/M phase cell cycle arrest, apoptosis, as confirmed by western blot assay, cellular fluorescence staining, and transcriptomics testing. Docking simulation was performed to determine the probable binding conformation of compound 3m within the active sites of FAK and PLK1. This compound emerged as a highly promising lead compound during our screening process, displaying high efficiency.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142997728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing antibody stability and efficacy in CD47- SIRPα inhibition via computational approaches. 通过计算方法优化抗体抑制CD47- SIRPα的稳定性和有效性。
IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Pub Date : 2025-01-20 DOI: 10.1007/s11030-024-11037-x
Kapil Laddha, M Elizabeth Sobhia

CD47, a cell surface protein, serves as a "don't eat me" signal that prevents immune cells from engulfing healthy cells upon its interaction with SIRPα. Cancer cells exploit this mechanism by overexpressing CD47 to evade immune destruction. Blocking the interaction between CD47 and its receptor, SIRPα, is a promising therapeutic strategy. Targeting the interactions between these surface proteins with small molecules is quite challenging, and on the other hand, antibodies offer potential. However, the interactions between antigen (CD47) and antibody (B6H12.2) play a crucial role in this scenario, and increasing the affinity by mutating the interacting residues might impact the inclination and effectiveness of the antibody towards antigen. Thus, this study focuses on designing antibodies with increased affinity and stability towards the antigen compared to the wild-type. Residual scanning calculations were performed to mutate the interacting as well as the hydrophobic residues of the antibody and affinity was assessed. Computational approaches, including antigen-antibody docking studies and molecular dynamics simulations, were employed to evaluate the affinity, stability and therapeutic potential of these modified antibodies.

CD47是一种细胞表面蛋白,作为一种“不要吃我”的信号,在与SIRPα相互作用时阻止免疫细胞吞噬健康细胞。癌细胞利用这一机制通过过表达CD47来逃避免疫破坏。阻断CD47与其受体SIRPα之间的相互作用是一种很有前景的治疗策略。靶向这些表面蛋白与小分子之间的相互作用是相当具有挑战性的,另一方面,抗体提供了潜力。然而,抗原(CD47)和抗体(B6H12.2)之间的相互作用在这种情况下起着至关重要的作用,通过突变相互作用残基来增加亲和力可能会影响抗体对抗原的倾向性和有效性。因此,本研究的重点是设计与野生型相比对抗原具有更高亲和力和稳定性的抗体。残差扫描计算突变抗体的相互作用残基和疏水残基,并评估亲和力。计算方法包括抗原-抗体对接研究和分子动力学模拟,以评估这些修饰抗体的亲和力、稳定性和治疗潜力。
{"title":"Optimizing antibody stability and efficacy in CD47- SIRPα inhibition via computational approaches.","authors":"Kapil Laddha, M Elizabeth Sobhia","doi":"10.1007/s11030-024-11037-x","DOIUrl":"https://doi.org/10.1007/s11030-024-11037-x","url":null,"abstract":"<p><p>CD47, a cell surface protein, serves as a \"don't eat me\" signal that prevents immune cells from engulfing healthy cells upon its interaction with SIRPα. Cancer cells exploit this mechanism by overexpressing CD47 to evade immune destruction. Blocking the interaction between CD47 and its receptor, SIRPα, is a promising therapeutic strategy. Targeting the interactions between these surface proteins with small molecules is quite challenging, and on the other hand, antibodies offer potential. However, the interactions between antigen (CD47) and antibody (B6H12.2) play a crucial role in this scenario, and increasing the affinity by mutating the interacting residues might impact the inclination and effectiveness of the antibody towards antigen. Thus, this study focuses on designing antibodies with increased affinity and stability towards the antigen compared to the wild-type. Residual scanning calculations were performed to mutate the interacting as well as the hydrophobic residues of the antibody and affinity was assessed. Computational approaches, including antigen-antibody docking studies and molecular dynamics simulations, were employed to evaluate the affinity, stability and therapeutic potential of these modified antibodies.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Diversity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1